Ex 6.3,11 - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii)
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important You are here
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
Last updated at April 16, 2024 by Teachoo
Ex 6.3, 11 It is given that at đĽ = 1, the function đĽ4 â 62đĽ2 + đđĽ+ 9 attains its maximum value, on the interval [0, 2]. Find the value of a.We have f(đĽ)=đĽ4 â 62đĽ2 + đđĽ+ 9 Finding fâ(đ) fâ(đĽ)=đ(đĽ^4â 62đĽ^2 + đđĽ + 9)/đđĽ = ă4đĽă^3â62 Ă2đĽ+đ = ă4đĽă^3â124đĽ+đ Given that at đĽ=1, f(đĽ)=đĽ^4â62đĽ^2+đđĽ+9 attain its Maximum Value i.e. f(đĽ) maximum at đĽ=1 â´ đâ(đĽ)=0 at đĽ=1 Now, fâ(1)=0 ă4đĽă^3â124đĽ+đ = 0 4(1)^3â124(1)+a=0 4 â 124 + a = 0 â120 + a = 0 a = 120 Hence, a = 120