Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12








Last updated at Jan. 7, 2020 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12
Transcript
Ex 6.5, 14 (Method 1) Find two positive numbers ๐ฅ and y such that ๐ฅ + ๐ฆ = 60 and ๐ฅ๐ฆ3 is maximum. Given two number ๐ฅ and y, such that ๐ฅ + ๐ฆ = 60 ๐ฆ=60โ๐ฅ Let P = ๐ฅ๐ฆ3 We need to maximize P Now, P = ๐ฅ๐ฆ3 Putting value of y from (1) P = ๐ฅ(60โ๐ฅ)3 Finding Pโ(x) P = ๐ฅ(60โ๐ฅ)^3 Diff w.r.t ๐ฅ ๐๐/๐๐ฅ=๐(๐ฅ(60 โ ๐ฅ)^3 )/๐๐ฅ ๐๐/๐๐ฅ=๐(๐ฅ)/๐๐ฅ (60โ๐ฅ)^3+(๐(60 โ ๐ฅ)^3)/๐๐ฅ . ๐ฅ =(60โ๐ฅ)^3+ใ3(60โ๐ฅ)ใ^2 . (0โ1) . ๐ฅ =(60โ๐ฅ)^3โ3๐ฅ(60โ๐ฅ)^2 =(60โ๐ฅ)^2 (60โ๐ฅ)โ3๐ฅ(60โ๐ฅ)^2 =(60โ๐ฅ)^2 [(60โ๐ฅ)โ3๐ฅ] =(60โ๐ฅ)^2 [60โ4๐ฅ] Using product rule as (๐ข๐ฃ)^โฒ=๐ข^โฒ ๐ฃ+๐ฃ^โฒ ๐ข Putting ๐ ๐ท/๐ ๐=๐ (60โ๐ฅ)^2 (60โ4๐ฅ)=0 So, x = 60 & x = 60/4 = 15 But, If ๐ฅ=60, ๐ฆ= 60 โ ๐ฅ = 60 โ 60 = 0 Which is not possible Hence, ๐ฅ= 15 is only critical point. Finding Pโโ (๐) Pโโ (๐ฅ)=๐((60 โ ๐ฅ)^2 (60 โ 4๐ฅ))/๐๐ฅ Pโโ (๐ฅ)=(๐(60 โ ๐ฅ)^2)/๐๐ฅ . (60โ4๐ฅ)+๐(60 โ 4๐ฅ)/๐๐ฅ (60โ๐ฅ)^2 = 2(60โ๐ฅ) .(0โ1)(60โ4๐ฅ)โ4(60โ๐ฅ)^2 = โ2(60โ๐ฅ) . (60โ4๐ฅ)โ4(60โ๐ฅ)^2 = โ2(60โ๐ฅ)[(60โ4๐ฅ)+2(60โ๐ฅ)] = โ2(60โ๐ฅ)[(60โ4๐ฅ)+120โ2๐ฅ] = โ2(60โ๐ฅ)(180โ6๐ฅ) Using product rule as (๐ข๐ฃ)^โฒ=๐ข^โฒ ๐ฃ+๐ฃ^โฒ ๐ข Using product rule as (๐ข๐ฃ)^โฒ=๐ข^โฒ ๐ฃ+๐ฃ^โฒ ๐ข Using product rule as (๐ข๐ฃ)^โฒ=๐ข^โฒ ๐ฃ+๐ฃ^โฒ ๐ข At ๐ = 15 Pโโ(15)=โ2(60โ15)(180โ6(15)) =โ90 ร90 =โ8100 < 0 โด Pโโ(๐ฅ)<0 at ๐ฅ = 15 Hence ๐ฅ๐ฆ3 is Maximum when ๐ฅ = 15 Thus, when ๐ฅ = 15 ๐ฆ =60 โ ๐ฅ=60 โ15=45 Hence, numbers are 15 & 45 Ex 6.5,14 (Method 2) Find two positive numbers ๐ฅ and y such that ๐ฅ + ๐ฆ = 60 and ๐ฅ๐ฆ3 is maximum. Given two number ๐ฅ and y, such that ๐ฅ + ๐ฆ = 60 ๐ฆ=60โ๐ฅ Let P = ๐ฅ๐ฆ3 We need to maximize P Now, P = ๐ฅ๐ฆ3 P = ๐ฅ(60โ๐ฅ)3 โฆ(1) Finding Pโ(x) P = ๐ฅ(60โ๐ฅ)^3 Diff w.r.t ๐ฅ ๐๐/๐๐ฅ=๐(๐ฅ(60โ๐ฅ)^3 )/๐๐ฅ ๐๐/๐๐ฅ=๐(๐ฅ)/๐๐ฅ (60โ๐ฅ)^3+(๐(60โ๐ฅ)^3)/๐๐ฅ . ๐ฅ =(60โ๐ฅ)^3+ใ3(60โ๐ฅ)ใ^2 . (0โ1) . ๐ฅ =(60โ๐ฅ)^3+3๐ฅ(60โ๐ฅ)^2 =(60โ๐ฅ)^2 [(60โ๐ฅ)โ3๐ฅ] =(60โ๐ฅ)^2 [60โ4๐ฅ] Using product rule as (๐ข๐ฃ)^โฒ=๐ข^โฒ ๐ฃ+๐ฃ^โฒ ๐ข Putting ๐ ๐ท/๐ ๐=๐ (60โ๐ฅ)^2 (60โ4๐ฅ)=0 So, x = 60 & x = 60/4 = 15 But, If ๐ฅ=60 ๐ฆ= 60 โ 60 = 0 Which is not possible Hence ๐ฅ= 15 is only critical point. โด ๐ฅ = 15 is point of local Maxima & P(๐ฅ) is Maximum at ๐ฅ = 15 Thus, when ๐ฅ = 15 ๐ฆ =60 โ ๐ฅ=60 โ15=45 Hence, numbers are 15 & 45
Ex 6.5
Ex 6.5,2 Important
Ex 6.5,3
Ex 6.5,4
Ex 6.5,5 Important
Ex 6.5,6
Ex 6.5,7 Important
Ex 6.5,8
Ex 6.5,9 Important
Ex 6.5,10
Ex 6.5,11 Important
Ex 6.5,12 Important
Ex 6.5,13
Ex 6.5,14 Important You are here
Ex 6.5,15 Important
Ex 6.5,16
Ex 6.5,17
Ex 6.5,18 Important
Ex 6.5,19 Important
Ex 6.5, 20 Important
Ex 6.5,21
Ex 6.5,22 Important
Ex 6.5,23 Important
Ex 6.5,24 Important
Ex 6.5,25 Important
Ex 6.5,26 Important
Ex 6.5, 27
Ex 6.5,28 Important
Ex 6.5,29
About the Author