







Last updated at Sept. 28, 2018 by Teachoo
Transcript
Ex 6.5,14 (Method 1) Find two positive numbers ๐ฅ and y such that ๐ฅ + ๐ฆ = 60 and ๐ฅ๐ฆ3 is maximum. Given two number ๐ฅ and y, such that ๐ฅ + ๐ฆ = 60 ๐ฆ=60โ๐ฅ Let P = ๐ฅ๐ฆ3 We need to maximize P Now, P = ๐ฅ๐ฆ3 Putting value of y from (1) P = ๐ฅ(60โ๐ฅ)3 Step 1: Finding Pโ(x) P = ๐ฅ(60โ๐ฅ)^3 Diff w.r.t ๐ฅ ๐๐/๐๐ฅ=๐(๐ฅ(60 โ ๐ฅ)^3 )/๐๐ฅ Using product rule as (๐ข๐ฃ)^โฒ=๐ข^โฒ ๐ฃ+๐ฃ^โฒ ๐ข ๐๐/๐๐ฅ=๐(๐ฅ)/๐๐ฅ (60โ๐ฅ)^3+(๐(60 โ ๐ฅ)^3)/๐๐ฅ . ๐ฅ =(60โ๐ฅ)^3+ใ3(60โ๐ฅ)ใ^2 . (0โ1) . ๐ฅ =(60โ๐ฅ)^3โ3๐ฅ(60โ๐ฅ)^2 =(60โ๐ฅ)^2 (60โ๐ฅ)โ3๐ฅ(60โ๐ฅ)^2 =(60โ๐ฅ)^2 [(60โ๐ฅ)โ3๐ฅ] =(60โ๐ฅ)^2 [60โ4๐ฅ] Step 2: Putting ๐๐/๐๐ฅ=0 (60โ๐ฅ)^2 (60โ4๐ฅ)=0 So, x = 60 & x = 60/4 = 15 But, If ๐ฅ=60 ๐ฆ= 60 โ ๐ฅ = 60 โ 60 = 0 Which is not possible Hence ๐ฅ= 15 is only critical point. Step 3: Finding Pโโ (๐ฅ) Pโโ (๐ฅ)=๐((60 โ ๐ฅ)^2 (60 โ 4๐ฅ))/๐๐ฅ Pโโ (๐ฅ)=(๐(60 โ ๐ฅ)^2)/๐๐ฅ . (60โ4๐ฅ)+๐(60 โ 4๐ฅ)/๐๐ฅ (60โ๐ฅ)^2 = 2(60โ๐ฅ) .(0โ1)(60โ4๐ฅ)โ4(60โ๐ฅ)^2 = โ2(60โ๐ฅ) . (60โ4๐ฅ)โ4(60โ๐ฅ)^2 = โ2(60โ๐ฅ)[(60โ4๐ฅ)+2(60โ๐ฅ)] = โ2(60โ๐ฅ)[(60โ4๐ฅ)+120โ2๐ฅ] = โ2(60โ๐ฅ)(180โ6๐ฅ) At ๐ฅ = 15 Pโโ(15)=โ2(60โ15)(180โ6(15)) =โ90 ร90 =โ8100 < 0 โด Pโโ(๐ฅ)<0 at ๐ฅ = 15 Hence ๐ฅ๐ฆ3 is Maximum when ๐ฅ = 15 Thus, when ๐ฅ = 15 ๐ฆ =60 โ ๐ฅ=60 โ15=45 Hence, numbers are 15 & 45 Ex 6.5,14 (Method 2) Find two positive numbers ๐ฅ and y such that ๐ฅ + ๐ฆ = 60 and ๐ฅ๐ฆ3 is maximum. Given two number ๐ฅ and y, such that ๐ฅ + ๐ฆ = 60 ๐ฆ=60โ๐ฅ Let P = ๐ฅ๐ฆ3 We need to maximize P Now, P = ๐ฅ๐ฆ3 P = ๐ฅ(60โ๐ฅ)3 Step 1: Finding Pโ(x) P = ๐ฅ(60โ๐ฅ)^3 Diff w.r.t ๐ฅ ๐๐/๐๐ฅ=๐(๐ฅ(60โ๐ฅ)^3 )/๐๐ฅ ๐๐/๐๐ฅ=๐(๐ฅ)/๐๐ฅ (60โ๐ฅ)^3+(๐(60โ๐ฅ)^3)/๐๐ฅ . ๐ฅ =(60โ๐ฅ)^3+ใ3(60โ๐ฅ)ใ^2 . (0โ1) . ๐ฅ =(60โ๐ฅ)^3+3๐ฅ(60โ๐ฅ)^2 =(60โ๐ฅ)^2 [(60โ๐ฅ)โ3๐ฅ] =(60โ๐ฅ)^2 [60โ4๐ฅ] Step 2: Putting ๐๐/๐๐ฅ=0 (60โ๐ฅ)^2 (60โ4๐ฅ)=0 So, x = 60 & x = 60/4 = 15 But, If ๐ฅ=60 ๐ฆ= 60 โ 60 = 0 Which is not possible Hence ๐ฅ= 15 is only critical point. Step 3: At ๐ฅ = 15 - if ๐ฅ < 15 (say 14.9) > 0 - if ๐ฅ > 15 (say 15.1) < 0 Since sign of Pโ(x) changes from positive to negative, it is Maxima โ ๐ฅ = 15 is point of local Maxima & P(๐ฅ) is Maximum at ๐ฅ = 15 Thus, when ๐ฅ = 15 ๐ฆ =60 โ ๐ฅ=60 โ15=45 Hence, numbers are 15 & 45
Ex 6.5
Ex 6.5,2
Ex 6.5,3
Ex 6.5,4
Ex 6.5,5 Important
Ex 6.5,6
Ex 6.5,7 Important
Ex 6.5,8
Ex 6.5,9
Ex 6.5,10
Ex 6.5,11 Important
Ex 6.5,12
Ex 6.5,13
Ex 6.5,14 You are here
Ex 6.5,15
Ex 6.5,16
Ex 6.5,17
Ex 6.5,18 Important
Ex 6.5,19
Ex 6.5,20 Important
Ex 6.5,21
Ex 6.5,22
Ex 6.5,23 Important
Ex 6.5,24
Ex 6.5,25
Ex 6.5,26 Important
Ex 6.5,27
Ex 6.5,28 Important
Ex 6.5,29
About the Author