

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Approximations (using Differentiation)
Question 1 (ii) Deleted for CBSE Board 2024 Exams
Question 1 (iii) Deleted for CBSE Board 2024 Exams
Question 1 (iv) Deleted for CBSE Board 2024 Exams
Question 1 (v) Important Deleted for CBSE Board 2024 Exams
Question 1 (vi) Deleted for CBSE Board 2024 Exams
Question 1 (vii) Deleted for CBSE Board 2024 Exams
Question 1 (viii) Deleted for CBSE Board 2024 Exams
Question 1 (ix) Deleted for CBSE Board 2024 Exams
Question 1 (x) Deleted for CBSE Board 2024 Exams
Question 1 (xi) Important Deleted for CBSE Board 2024 Exams
Question 1 (xii) Deleted for CBSE Board 2024 Exams
Question 1 (xiii) Deleted for CBSE Board 2024 Exams
Question 1 (xiv) Important Deleted for CBSE Board 2024 Exams
Question 1 (xv) Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 (MCQ) Important Deleted for CBSE Board 2024 Exams
Question 9 (MCQ) Deleted for CBSE Board 2024 Exams
Approximations (using Differentiation)
Last updated at May 29, 2023 by Teachoo
Question 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (i) √25.3Let y = √𝒙 Thus, √(𝟐𝟓.𝟑) = y + ∆𝒚 Here, ∆𝒚 = 𝒅𝒚/𝒅𝒙 △x where x = 25 & △x = 0.3 Since y = √𝑥 𝒅𝒚/𝒅𝒙 = (𝑑(√𝑥))/𝑑𝑥 = 𝟏/(𝟐√𝒙) Now, ∆𝒚 = 𝒅𝒚/𝒅𝒙 △x = 1/(2√𝑥) △x Putting x = 25 & △x = 0.3 = 1/(2√25) (0.3) = 1/(2 × 5) × 0.3 = 0.3/10 = 0.03 Therefore, √25.3 = y + ∆𝑦 Putting values √25.3 =√25+0.03 √(𝟐𝟓. 𝟑)=𝟓. 𝟎𝟑 Hence, approximate value of √25.3 is 5.03