Slide1.JPG

Slide2.JPG
Slide3.JPG Slide4.JPG Slide5.JPG Slide6.JPG Slide7.JPG Slide8.JPG Slide9.JPG Slide10.JPG Slide11.JPG Slide12.JPG Slide13.JPG Slide14.JPG Slide15.JPG Slide16.JPG Slide17.JPG Slide18.JPG Slide19.JPG Slide20.JPG Slide21.JPG Slide22.JPG Slide23.JPG Slide24.JPG Slide25.JPG Slide26.JPG Slide27.JPG Slide28.JPG Slide29.JPG Slide30.JPG Slide31.JPG Slide32.JPG Slide33.JPG Slide34.JPG Slide35.JPG Slide36.JPG Slide37.JPG Slide38.JPG Slide39.JPG Slide40.JPG Slide41.JPG Slide42.JPG Slide43.JPG Slide44.JPG Slide45.JPG Slide46.JPG Slide47.JPG Slide48.JPG Slide49.JPG Slide50.JPG

Subscribe to our Youtube Channel - https://you.tube/teachoo

  1. Chapter 6 Class 12 Application of Derivatives
  2. Serial order wise

Transcript

Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (i) โˆš25.3 Let y = โˆš๐‘ฅ where x = 25 & โ–ณ x = 0.3 Since y = โˆš๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘(โˆš๐‘ฅ))/๐‘‘๐‘ฅ = 1/(2โˆš๐‘ฅ) Now, โˆ†๐‘ฆ = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โ–ณx = 1/(2โˆš๐‘ฅ) (0.3) = 1/(2โˆš25) (0.3) = 1/(2 ร— 5) ร— 0.3 = 0.3/10 = 0.03 Also, โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) Putting values โˆ†๐‘ฆ=โˆš(๐‘ฅ+โˆ†๐‘ฅ)โˆ’โˆš๐‘ฅ 0. 03=โˆš(25+0. 3)โˆ’โˆš25 0. 03=โˆš(25. 3)โˆ’5 0. 03+5=โˆš(25. 3) โˆš(25. 3)=5. 03 Hence, approximate value of โˆš25.3 is 5.03 Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (ii) โˆš49.5 Let y = โˆš๐‘ฅ where x = 49 & โ–ณ x = 0.5 Since y = โˆš๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘(โˆš๐‘ฅ))/๐‘‘๐‘ฅ = 1/(2โˆš๐‘ฅ) Now, โˆ†๐‘ฆ = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โ–ณx = 1/(2โˆš๐‘ฅ) (0.5) = 1/(2 ร— โˆš49) ร— 0.5 = 1/(2 ร— 7) ร— 0.5 = 0.5/14 = 0.036 Also, โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) Putting values โˆ†๐‘ฆ=โˆš(๐‘ฅ+โˆ†๐‘ฅ)โˆ’โˆš๐‘ฅ 0. 036=โˆš(49+0. 5)โˆ’โˆš49 0. 036=โˆš49.5โˆ’7 0. 036+7=โˆš49.5 โˆš49.5=7. 036 Hence, approximate value of โˆš49.5 is 7.036 Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (iii) โˆš0.6 Let y = โˆš๐‘ฅ where x = 0.64 & โ–ณx = โ€“0.04 Since y = โˆš๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘(โˆš๐‘ฅ))/๐‘‘๐‘ฅ = 1/(2โˆš๐‘ฅ) Now, โˆ†๐‘ฆ = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โ–ณx = 1/(2โˆš0.64) (โ€“0.04) = 1/(2โˆš(64/100)) (โ€“0.04) = 1/(2 ร—8/10) ร— (โ€“0.04) = (โˆ’10 ร— 0.04)/16 = (โˆ’10 ร— 4)/(16 ร— 100) = โ€“0.025 Also, โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) Putting values โˆ†๐‘ฆ=โˆš(๐‘ฅ+โˆ†๐‘ฅ)โˆ’โˆš๐‘ฅ โˆ’0. 025=โˆš(0.64โˆ’0.04)โˆ’โˆš0.64 โˆ’0.025=โˆš0.60โˆ’0.8 0.8 โ€“ 0. 025=โˆš0.60 โˆš0.60=0.775 Hence, approximate value of โˆš0.60 is 0.775 Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (iv) ใ€–(0.009)ใ€—^(1/3) Let ๐‘ฆ=(๐‘ฅ)^(1/3) where ๐‘ฅ=0. 008 & โˆ†๐‘ฅ=0. 001 Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(ใ€–๐‘ฅ ใ€—^(1/3) )/๐‘‘๐‘ฅ=1/3 ๐‘ฅ^((โˆ’2)/3)=1/(3ใ€– ๐‘ฅใ€—^( 2/3) ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=1/(3ใ€– ๐‘ฅใ€—^( 2/3) ) ร—โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=1/(3(0. 008)^( 2/3) ) ร—0. 001 โˆ†๐‘ฆ=(0. 001)/(3(8/1000)^(2/3) ) โˆ†๐‘ฆ=(0. 001)/(3(2/10)^( 3 ร— 2/3) ) โˆ†๐‘ฆ=(0. 001)/(3(2/10)^2 ) โˆ†๐‘ฆ=(0. 001)/(3 ร— 4/100) โˆ†๐‘ฆ=(0.001 ร— 100)/12 โˆ†๐‘ฆ=0. 008 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) โˆ†๐‘ฆ=ใ€–(๐‘ฅ+โˆ†๐‘ฅ) ใ€—^(1/3)โˆ’ใ€–๐‘ฅ ใ€—^(1/3) Putting Values 0. 008=(0. 008" " +0. 001)^( 1/3)โˆ’(0. 008" " )^( 1/3) 0. 008=(0. 009)^( 1/3)โˆ’(0. 008)^( 1/3) 0. 008=(0. 009)^( 1/3)โˆ’(8/1000)^( 1/3) 0. 008=(0. 009)^( 1/3)โˆ’(2/10)^( 3 ร— 1/3) 0. 008=(0. 009)^( 1/3)โˆ’(2/10) 0. 008=(0. 009)^( 1/3)โˆ’0. 2 0. 008+0. 2=(0. 009)^( 1/3) (0. 009)^( 1/3)=0. 208 Thus , Approximate Value of (0 . 009)^(1/3) is ๐ŸŽ. ๐Ÿ๐ŸŽ๐Ÿ– Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (v) ใ€–(0.999)ใ€—^(1/10) Let ๐‘ฆ=ใ€–๐‘ฅ ใ€—^(1/10) where ๐‘ฅ=1 , โˆ†๐‘ฅ=โˆ’0. 001 Now, ๐‘ฆ=๐‘ฅ^( 1/10) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^( 1/10) )/๐‘‘๐‘ฅ=1/10 ๐‘ฅ^((โˆ’9)/10)=1/(10ใ€– ๐‘ฅใ€—^(9/10) ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ= 1/(10ใ€– ๐‘ฅใ€—^(9/10) ) โˆ†๐‘ฅ โˆ†๐‘ฆ= 1/(10 (1)^(9/10) ) ร— (โˆ’0. 001) โˆ†๐‘ฆ= 1/10 ร—(โˆ’0. 001) โˆ†๐‘ฆ=โˆ’0. 0001 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) โˆ†๐‘ฆ=ใ€–(๐‘ฅ+โˆ†๐‘ฅ) ใ€—^(1/10)โˆ’๐‘ฅ^( 1/10) Putting Values โˆ†๐‘ฆ=(1+(โˆ’0. 001))^(1/10)โˆ’(1)^(1/10) โˆ’0. 0001=(0. 999)^(1/10)โˆ’1 โˆ’0. 0001+1=(0. 999)^(1/10) 0. 9999=(0. 999)^(1/10) Thus, the Approximate Value of (0. 999)^(1/10) is ๐ŸŽ. ๐Ÿ—๐Ÿ—๐Ÿ—๐Ÿ— Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (vi) ใ€–(15)ใ€—^(1/4)Let ๐‘ฆ=ใ€–๐‘ฅ ใ€—^(1/4) where ๐‘ฅ=16 , โˆ†๐‘ฅ=โˆ’1 Now, ๐‘ฆ=๐‘ฅ^( 1/4) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^( 1/4) )/๐‘‘๐‘ฅ=1/4 ๐‘ฅ^( (1 โˆ’ 4)/4 )=1/4 ๐‘ฅ^( (โˆ’3)/( 4) ) Let ๐‘ฆ=ใ€–๐‘ฅ ใ€—^(1/4) where ๐‘ฅ=16 , โˆ†๐‘ฅ=โˆ’1 Now, ๐‘ฆ=๐‘ฅ^( 1/4) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^( 1/4) )/๐‘‘๐‘ฅ=1/4 ๐‘ฅ^( (1 โˆ’ 4)/4 )=1/4 ๐‘ฅ^( (โˆ’3)/( 4) ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=1/(4(๐‘ฅ)^( 3/4) ) โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=1/(4(16)^( 3/4) ) . (โˆ’1) โˆ†๐‘ฆ=1/(4(2^4 )^( 3/4) ) (โˆ’1) โˆ†๐‘ฆ=(โˆ’1)/(4 ร— 2^3 ) โˆ†๐‘ฆ=(โˆ’1)/(4 ร— 8) โˆ†๐‘ฆ=(โˆ’1)/32 โˆ†๐‘ฆ=โˆ’0. 03125 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) โˆ†๐‘ฆ=(๐‘ฅ+โˆ†๐‘ฅ)^(1/4)โˆ’(๐‘ฅ)^(1/4) Putting Values โˆ’0. 03125=(16+(โˆ’1))^( 1/4)โˆ’ใ€–(16) ใ€—^(1/4) โˆ’0. 03125=(16โˆ’1)^( 1/4)โˆ’(2)^(4 ร— 1/4) โˆ’0. 03125=(15)^( 1/4)โˆ’2 โˆ’0. 03125+2=(15)^( 1/4) โˆ’0. 03125+2=(15)^( 1/4) 1. 96875=(15)^( 1/4) Thus, Approximate Value of (15)^( 1/4) is ๐Ÿ. ๐Ÿ—๐Ÿ”๐Ÿ–๐Ÿ•๐Ÿ“ Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (vii) ใ€–(26)ใ€—^(1/3) Let ๐‘ฆ=(๐‘ฅ)^(1/3) where ๐‘ฅ=27 & โˆ†๐‘ฅ=โˆ’1 Now, ๐‘ฆ=ใ€–๐‘ฅ ใ€—^(1/3) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(ใ€–๐‘ฅ ใ€—^(1/3) )/๐‘‘๐‘ฅ=1/3 ใ€–๐‘ฅ ใ€—^(1/3 โˆ’ 1) =1/3 ใ€–๐‘ฅ ใ€—^((โˆ’ 2)/( 3) )=1/(3ใ€–๐‘ฅ ใ€—^(2/( 3) ) ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=1/(3ใ€–๐‘ฅ ใ€—^(2/( 3) ) ) โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=1/(3(27)^( 2/3 ) )ร— (โˆ’1) โˆ†๐‘ฆ=1/(3(3^3 )^( 2/3 ) )ร— (โˆ’1) โˆ†๐‘ฆ=(โˆ’1)/(3ใ€– ร— 3ใ€—^(2 ) ) โˆ†๐‘ฆ=(โˆ’1)/(3 ร— 9 ) โˆ†๐‘ฆ=(โˆ’1)/27 โˆ†๐‘ฆ=โˆ’0. 037037 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) โˆ†๐‘ฆ=ใ€–(๐‘ฅ+โˆ†๐‘ฅ) ใ€—^(1/3)โˆ’(๐‘ฅ)^( 1/3) Putting Values โˆ’0. 037037=ใ€–(27+(โˆ’1)) ใ€—^(1/3)โˆ’(27)^( 1/3) โˆ’0. 037037=ใ€–(26) ใ€—^(1/3)โˆ’(3)^( 3 ร— 1/3) โˆ’0. 037037=ใ€–(26) ใ€—^(1/3)โˆ’3 โˆ’0. 037037+3=ใ€–(26) ใ€—^(1/3) 2. 9629=ใ€–(26) ใ€—^(1/3) Thus, Approximate Value of (26)^(1/3) is ๐Ÿ. ๐Ÿ—๐Ÿ”๐Ÿ๐Ÿ— Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (viii) ใ€–(255)ใ€—^(1/4) Let ๐‘ฆ=(๐‘ฅ)^(1/4) where ๐‘ฅ=256 & โˆ†๐‘ฅ=โˆ’1 Now, ๐‘ฆ=(๐‘ฅ)^(1/4) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(ใ€–๐‘ฅ ใ€—^(1/4) )/๐‘‘๐‘ฅ=1/4 ๐‘ฅ^( 1/4 โˆ’ 1) =1/4 ๐‘ฅ^( (โˆ’3)/( 4))=1/(4 ๐‘ฅ^( 3/( 4)) ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=1/(4ใ€– ๐‘ฅใ€—^( 3/( 4)) ) ร—โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=1/(4 (256)^(3/4) ) ร— (โˆ’1) โˆ†๐‘ฆ=(โˆ’ 1)/(4 (4^4 )^(3/4) ) โˆ†๐‘ฆ=(โˆ’ 1)/(4 ร— 4^3 ) โˆ†๐‘ฆ=(โˆ’ 1)/(4 ร— 64) โˆ†๐‘ฆ=(โˆ’ 1)/256 โˆ†๐‘ฆ=โˆ’0. 0039 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) โˆ†๐‘ฆ=ใ€–(๐‘ฅ+โˆ†๐‘ฅ) ใ€—^(1/4)โˆ’๐‘ฅ^( 1/4) Putting Values โˆ’0. 0039=ใ€–(256+(โˆ’1)) ใ€—^(1/4)โˆ’(256)^( 1/4) โˆ’0. 0039=ใ€–(255) ใ€—^(1/4)โˆ’(4^4 )^( 1/4) โˆ’0. 0039=ใ€–(255) ใ€—^(1/4)โˆ’4 โˆ’0. 0039=ใ€–(255) ใ€—^(1/4)โˆ’4 โˆ’0. 0039+4=ใ€–(255) ใ€—^(1/4) 3. 9961=ใ€–(255) ใ€—^(1/4) Thus, the Approximate Values of ใ€–(255) ใ€—^(1/4) is ๐Ÿ‘. ๐Ÿ—๐Ÿ—๐Ÿ”๐Ÿ Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (ix) ใ€–(82)ใ€—^(1/4) Let ๐‘ฆ=(๐‘ฅ)^( 1/4) where ๐‘ฅ=81 โˆ†๐‘ฅ=1 Now, ๐‘ฆ=(๐‘ฅ)^( 1/4) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^( 1/4) )/๐‘‘๐‘ฅ=1/4 ใ€–๐‘ฅ ใ€—^(1/4 โˆ’ 1)=1/4 ใ€–๐‘ฅ ใ€—^((โˆ’3)/( 4))=1/(4ใ€–๐‘ฅ ใ€—^(3/4) ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=1/(4ใ€– ๐‘ฅ ใ€—^(3/4) ) โˆ†๐‘ฆ Putting Values โˆ†๐‘ฆ=1/(4(81)^( 3/4) ) ร— (1) โˆ†๐‘ฆ=1/(4 ร—3^(4 ร— 3/4 ) ) ร— (1) โˆ†๐‘ฆ=1/(4 ร— 3^3 ) โˆ†๐‘ฆ=1/(4 ร—27) โˆ†๐‘ฆ=1/108 โˆ†๐‘ฆ=0. 009 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) So, โˆ†๐‘ฆ=(๐‘ฅ+โˆ†๐‘ฅ)^( 1/4) โˆ’(๐‘ฅ)^( 1/4) Putting Values 0. 009=(81+1)^( 1/4)โˆ’ใ€–(81) ใ€—^(1/4) 0. 009=(82)^( 1/4)โˆ’(3)^(4 ร— 1/4 ) 0. 009=(82)^( 1/4)โˆ’3 0. 009+3=(82)^( 1/4) 3. 009=(82)^( 1/4) Thus, the Approximate Value of (82)^( 1/4) is ๐Ÿ‘. ๐ŸŽ๐ŸŽ๐Ÿ— Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (x) ใ€–(401)ใ€—^(1/2) Let ๐‘ฆ=๐‘ฅ^( 1/2) where ๐‘ฅ=400 & โˆ†๐‘ฅ=1 Now, ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=1/(2โˆš๐‘ฅ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=๐‘‘๐‘ฆ/(2โˆš๐‘ฅ) โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=1/(2โˆš400) ร—(1) โˆ†๐‘ฆ=1/(2โˆš400) ร—(1) โˆ†๐‘ฆ=1/(2โˆš(ใ€–20ใ€—^2 )) โˆ†๐‘ฆ=1/(2 ร— 20) โˆ†๐‘ฆ=1/40 โˆ†๐‘ฆ=0. 025 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) So, โˆ†๐‘ฆ= (๐‘ฅ+โˆ†๐‘ฅ)^( 1/2)โˆ’(๐‘ฅ)^( 1/2) Putting Values 0. 025=(400+1)^( 1/(2 ))โˆ’ใ€–(400) ใ€—^(1/2) 0. 025=(401)^( 1/2)โˆ’(20)^( 2 ร— 1/2) 0. 025=(401)^( 1/2)โˆ’20 0. 025+20=(401)^( 1/2) 20. 025=(401)^( 1/2) (401)^( 1/2)=20. 025 Thus, the Approximate Value of (401)^( 1/2) is ๐Ÿ๐ŸŽ. ๐ŸŽ๐Ÿ๐Ÿ“ Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xi) ใ€–(0.0037)ใ€—^(1/2) Let y = โˆš๐‘ฅ Let x = 0.0036 & โ–ณ x = 0.0001 Since y = โˆš๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = (๐‘‘(โˆš๐‘ฅ))/๐‘‘๐‘ฅ = 1/(2โˆš๐‘ฅ) Now, โˆ†๐‘ฆ = ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โ–ณx = 1/(2โˆš๐‘ฅ) (0.0001) = 1/(2โˆš0.0036) (0.0001) = 1/(2 ร— 0.06) ร— (0.0001) = 0.0001/0.12 = 1/1200 = 0.000833 Also, โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) So, โˆ†๐‘ฆ=(๐‘ฅ+โˆ†๐‘ฅ)^( 1/2)โˆ’(๐‘ฅ)^( 1/2) Putting Values 0. 000833=(0. 0036+0. 0001)^( 1/2)โˆ’(0. 0036)^( 1/2) 0. 000833=(0. 0037)^( 1/2)โˆ’(36/10000)^(1/2) 0. 000833=(0. 0037)^( 1/2)โˆ’(6/100)^( 2 ร— 1/2) 0. 000833=(0. 0037)^( 1/2)โˆ’(0. 06)^(2 ร— 1/2 ) 0. 000833=(0. 0037)^( 1/2)โˆ’(0. 06) 0. 000833+0. 06=(0. 0037)^( 1/2) 0. 060833=(0. 0037)^( 1/2) (0. 0037)^( 1/2)=0. 060833 Thus, the Approximate Value of (0. 0037)^( 1/2)=๐ŸŽ. ๐ŸŽ๐Ÿ”๐ŸŽ๐Ÿ–๐Ÿ‘๐Ÿ‘ Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xii) ใ€–(26.57)ใ€—^(1/3) Let ๐‘ฆ=๐‘ฅ^( 1/3) where ๐‘ฅ=27 & โˆ† ๐‘ฅ=โˆ’0. 43 Now, ๐‘ฆ=๐‘ฅ^( 1/3) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^( 1/3) )/๐‘‘๐‘ฅ=1/3 ๐‘ฅ^( 1/3 โˆ’ 1)=1/3 ๐‘ฅ^( (โˆ’ 2)/( 3))=1/(3 ๐‘ฅ^( 2/( 3)) ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=1/(3 ๐‘ฅ^( 2/( 3)) ) ร— โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=1/(3 (27)^( 2/( 3)) ) ร— (โˆ’0. 43) โˆ†๐‘ฆ=(โˆ’0. 43)/(3 ร— 3^(3 ร— 2/( 3)) ) โˆ†๐‘ฆ=(โˆ’0. 43)/(3 ร— 3^2 ) โˆ†๐‘ฆ=(โˆ’0. 43)/(3 ร— 9) โˆ†๐‘ฆ=(โˆ’0. 43)/27 โˆ†๐‘ฆ=โˆ’0. 015926 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) So, โˆ†๐‘ฆ=ใ€–(๐‘ฅ+โˆ†๐‘ฅ) ใ€—^(1/3)โˆ’๐‘ฅ^( 1/3) Putting Values โˆ’0. 015926=(27+(โˆ’0. 43))^( 1/3)โˆ’(27)^( 1/3) โˆ’0. 015926=(26. 57)^( 1/3)โˆ’(27)^( 3 ร— 1/3) โˆ’0. 015926=(26. 57)^( 1/3)โˆ’3 โˆ’0. 015926+3=(26. 53)^( 1/3) 2. 984=(26. 53)^( 1/3) Thus, the Approximate Values of (26. 53)^( 1/3) is ๐Ÿ. ๐Ÿ—๐Ÿ–๐Ÿ’ Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xiii) ใ€–(81.5)ใ€—^(1/4) Let ๐‘ฆ=(๐‘ฅ)^( 1/4) where ๐‘ฅ=81 & โˆ†๐‘ฅ=0. 5 Now, ๐‘ฆ=๐‘ฅ^( 1/4) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^( 1/4) )/๐‘‘๐‘ฅ=1/4 ๐‘ฅ^( 1/4 โˆ’ 1)=1/4 ๐‘ฅ^( (โˆ’ 3)/( 4)) =1/(4๐‘ฅ^(3/4) ) โˆ† ๐‘ฅ Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=๐‘‘๐‘ฆ/(4๐‘ฅ^(3/4) ) โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=1/(4(81)^( 3/4) ) ร— (0. 5) โˆ†๐‘ฆ=(0. 5)/(4 ร— (3^( 4) )^( 3/4) ) โˆ†๐‘ฆ=(0. 5)/(4 ร— 3^( 3) ) โˆ†๐‘ฆ=(0. 5)/(4 ร— 27) โˆ†๐‘ฆ=(0. 5)/108 โˆ†๐‘ฆ=0. 0046 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) So, โˆ†๐‘ฆ=(๐‘ฅ+โˆ†๐‘ฅ)^( 1/4)โˆ’๐‘ฅ^( 1/4) Putting Values 0. 0046=(81+0. 5)^( 1/4)โˆ’(81)^( 1/4) 0. 0046=(81. 5)^( 1/4)โˆ’(3^4 )^( 1/4) 0. 0046=(81. 5)^( 1/4)โˆ’3 0. 0046+3=(81. 5)^( 1/4) 3. 0046=(81. 5)^( 1/4) Thus, Approximate Value of (81. 5)^( 1/4) is ๐Ÿ‘. ๐ŸŽ๐ŸŽ๐Ÿ’๐Ÿ” Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xiv) ใ€–(3.968)ใ€—^(3/2) Let ๐‘ฆ=๐‘ฅ^( 3/2) where ๐‘ฅ=4 & โˆ†๐‘ฅ=โˆ’0. 032 Now, ๐‘ฆ=๐‘ฅ^( 3/2) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^( 3/2) )/๐‘‘๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=3/2 ใ€–๐‘ฅ ใ€—^(1/2) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=3/2 ๐‘ฅ^( 1/2) โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=3/2 (4)^( 1/2) . (โˆ’0. 032) โˆ†๐‘ฆ=3/2 (2^2 )^( 1/2) . (โˆ’0. 032) โˆ†๐‘ฆ=3/2 ร— 2 ร— (โˆ’0. 032) โˆ†๐‘ฆ=3 ร— (โˆ’0. 032) โˆ†๐‘ฆ=โˆ’0. 096 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) So, โˆ†๐‘ฆ=(๐‘ฅ+โˆ†๐‘ฅ)^( 3/2)โˆ’๐‘ฅ^( 3/2) Putting Values โˆ’0. 096=(4+(โˆ’0. 032))^( 3/2)โˆ’(4)^( 3/2) โˆ’0. 096=(4โˆ’0. 032)^( 3/2)โˆ’ใ€–(2)^2ใ€—^( ร— 3/2) โˆ’0. 096=(3. 968)^( 3/2)โˆ’2^3 โˆ’0. 096=(3. 968)^( 3/2)โˆ’8 โˆ’0. 096+8=(3. 968)^( 3/2) 7. 904=(3. 968)^( 3/2) (3. 968)^( 3/2)=7.904 Thus, Approximate Values of (3. 968)^( 3/2) is ๐Ÿ•. ๐Ÿ—๐ŸŽ๐Ÿ’ Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xv) ใ€–(32.15)ใ€—^(1/5) Let ๐‘ฆ=(๐‘ฅ)^( 1/5) where ๐‘ฅ=32 & โˆ†๐‘ฅ=0. 15 Now, ๐‘ฆ=(๐‘ฅ)^( 1/5) Differentiating w.r.t.๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=๐‘‘(๐‘ฅ^( 1/5) )/๐‘‘๐‘ฅ=1/5 ๐‘ฅ^( 1/5 โˆ’ 1) =1/5 ๐‘ฅ^( (โˆ’ 4)/( 5) )=1/(5ใ€– ๐‘ฅใ€—^( 4/5 ) ) Using โˆ†๐‘ฆ=๐‘‘๐‘ฆ/๐‘‘๐‘ฅ โˆ†๐‘ฅ โˆ†๐‘ฆ=1/(5 ใ€–๐‘ฅ ใ€—^(4/5) ) โˆ†๐‘ฅ Putting Values โˆ†๐‘ฆ=1/(5(32)^( 4/5) ) ร— (0. 15) โˆ†๐‘ฆ=1/(5(2)^( 5 ร— 4/5) ) ร— (0. 15) โˆ†๐‘ฆ=1/(5(2)^( 4) ) ร— (0. 15) โˆ†๐‘ฆ=1/(5 ร— 16) ร— 0. 15 โˆ†๐‘ฆ=(0. 15" " )/80 โˆ†๐‘ฆ=0. 00187 We know that โˆ†๐‘ฆ=๐‘“(๐‘ฅ+โˆ†๐‘ฅ)โˆ’๐‘“(๐‘ฅ) So, โˆ†๐‘ฆ=(๐‘ฅ+โˆ†๐‘ฅ)^( 1/5)โˆ’ใ€–๐‘ฅ ใ€—^(1/5) Putting Values 0. 00187=(32+0. 15)^( 1/5)โˆ’(32)^( 1/5) 0. 00187=(32. 15)^( 1/5)โˆ’(2)^(5 ร— 1/5 ) 0. 00187=(32. 15)^( 1/5)โˆ’2 0. 00187+2=(32. 15)^( 1/5) 2. 00187=(32. 15)^( 1/5) (32. 15)^( 1/5)=2. 00187 Hence, Approximate Values of (32. 15)^( 1/5) is ๐Ÿ. ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ–๐Ÿ• Hence, Approximate Values of (32. 15)^( 1/5) is ๐Ÿ. ๐ŸŽ๐ŸŽ๐Ÿ๐Ÿ–๐Ÿ•

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.