web analytics

Ex 6.4, 1 - Using differentials, find approximate value of - Ex 6.4

Slide2.JPG
Slide3.JPG Slide4.JPG Slide5.JPG Slide6.JPG Slide7.JPG Slide8.JPG Slide9.JPG Slide10.JPG Slide11.JPG Slide12.JPG Slide13.JPG Slide14.JPG Slide15.JPG Slide16.JPG Slide17.JPG Slide18.JPG Slide19.JPG Slide20.JPG Slide21.JPG Slide22.JPG Slide23.JPG Slide24.JPG Slide25.JPG Slide26.JPG Slide27.JPG Slide28.JPG Slide29.JPG Slide30.JPG Slide31.JPG Slide32.JPG Slide33.JPG Slide34.JPG Slide35 - Copy.JPG Slide36 - Copy.JPG Slide37.JPG Slide38.JPG Slide39.JPG Slide40.JPG Slide41.JPG Slide42.JPG Slide43.JPG


  1. Chapter 6 Class 12 Application of Derivatives
  2. Serial order wise
Ask Download

Transcript

Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (i) ﷮25.3﷯ Let y = ﷮𝑥﷯ Let x = 25 & △ x = 0.3 Since y = ﷮𝑥﷯ 𝑑𝑦﷮𝑑𝑥﷯ = 𝑑( ﷮𝑥﷯)﷮𝑑𝑥﷯ = 1﷮2 ﷮𝑥﷯﷯ Now, ∆𝑦 = 𝑑𝑦﷮𝑑𝑥﷯ △x = 1﷮2 ﷮𝑥﷯﷯ (0.3) = 1﷮2 ﷮25﷯﷯ (0.3) = 1﷮2 × 5﷯ × 0.3 = 0.3﷮10﷯ = 0.03 Also, ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ Putting values ∆𝑦= ﷮𝑥+∆𝑥﷯− ﷮𝑥﷯ 0. 03= ﷮25+0. 3﷯− ﷮25﷯ 0. 03= ﷮25. 3﷯−5 0. 03+5= ﷮25. 3﷯ ﷮25. 3﷯=5. 03 Hence, approximate value of ﷮25.3﷯ is 5.03 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (ii) ﷮49.5﷯ Let y = ﷮𝑥﷯ Let x = 49 & △ x = 0.5 Since y = ﷮𝑥﷯ 𝑑𝑦﷮𝑑𝑥﷯ = 𝑑( ﷮𝑥﷯)﷮𝑑𝑥﷯ = 1﷮2 ﷮𝑥﷯﷯ Now, ∆𝑦 = 𝑑𝑦﷮𝑑𝑥﷯ △x = 1﷮2 ﷮𝑥﷯﷯ (0.5) = 1﷮2 ﷮49﷯﷯ (0.5) = 1﷮2 × 7﷯ × 0.5 = 0.5﷮14﷯ = 0.036 Also, ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ Putting values ∆𝑦= ﷮𝑥+∆𝑥﷯− ﷮𝑥﷯ 0. 036= ﷮49+0. 5﷯− ﷮49﷯ 0. 036= ﷮49.5﷯−7 0. 036+7= ﷮49.5﷯ ﷮49.5﷯=7. 036 Hence, approximate value of ﷮49.5﷯ is 7.036 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (iii) ﷮0.6﷯ Let y = ﷮𝑥﷯ Let x = 0.64 & △x = –0.04 Since y = ﷮𝑥﷯ 𝑑𝑦﷮𝑑𝑥﷯ = 𝑑( ﷮𝑥﷯)﷮𝑑𝑥﷯ = 1﷮2 ﷮𝑥﷯﷯ Now, ∆𝑦 = 𝑑𝑦﷮𝑑𝑥﷯ △x = 1﷮2 ﷮0.64﷯﷯ (–0.04) = 1﷮2 ﷮0.64﷯﷯ (–0.04) = 1﷮2 × 0.8﷯ × (–0.04) = −0.04﷮1.6﷯ = –0.025 Also, ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ Putting values ∆𝑦= ﷮𝑥+∆𝑥﷯− ﷮𝑥﷯ −0. 025= ﷮0.64−0.04﷯− ﷮0.64﷯ −0.025= ﷮0.60﷯−0.8 0.8 – 0. 025= ﷮0.60﷯ ﷮0.60﷯=0.775 Hence, approximate value of ﷮0.60﷯ is 0.775 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (iv) (0.009)﷮ 1﷮3﷯﷯ Let 𝑦= 𝑥﷯﷮ 1﷮3﷯﷯ where 𝑥=0. 008 & ∆𝑥=0. 001 Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥 ﷮ 1﷮3﷯﷯﷯﷮𝑑𝑥﷯= 1﷮3﷯ 𝑥﷮ −2﷮3﷯﷯= 1﷮3 𝑥﷮ 2﷮3﷯﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 1﷮3 𝑥﷮ 2﷮3﷯﷯﷯ ×∆𝑥 Putting Values ∆𝑦= 1﷮3 0. 008﷯﷮ 2﷮3﷯﷯﷯ ×0. 001 ∆𝑦= 0. 001﷮3 8﷮1000﷯﷯﷮ 2﷮3﷯﷯﷯ ∆𝑦= 0. 001﷮3 2﷮10﷯﷯﷮ 3 × 2﷮3﷯﷯﷯ ∆𝑦= 0. 001﷮3 2﷮10﷯﷯﷮2﷯﷯ ∆𝑦= 0. 001﷮3 0. 2﷯﷮2﷯﷯ ∆𝑦= 0. 001﷮0. 12﷯ ∆𝑦=0. 008 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ ∆𝑦= 𝑥+∆𝑥﷯ ﷮ 1﷮3﷯﷯− 𝑥 ﷮ 1﷮3﷯﷯ Putting Values 0. 008= 0. 008 +0. 001﷯﷮ 1﷮3﷯﷯− 0. 008 ﷯﷮ 1﷮3﷯﷯ 0. 008= 0. 009﷯﷮ 1﷮3﷯﷯− 0. 008 ﷯﷮ 1﷮3﷯﷯ 0. 008= 0. 009﷯﷮ 1﷮3﷯﷯− 8﷮1000﷯﷯﷮ 1﷮3﷯﷯ 0. 008= 0. 009﷯﷮ 1﷮3﷯﷯− 2﷮10﷯﷯﷮ 3 × 1﷮3﷯﷯ 0. 008= 0. 009﷯﷮ 1﷮3﷯﷯− 2﷮10﷯﷯ 0. 008= 0. 009﷯﷮ 1﷮3﷯﷯−0. 2 0. 008+0. 2= 0. 009﷯﷮ 1﷮3﷯﷯ 0. 009﷯﷮ 1﷮3﷯﷯=0. 208 Thus , Approximate Value of 0 . 009﷯﷮ 1﷮3﷯﷯ is 𝟎. 𝟐𝟎𝟖 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (v) (0.999)﷮ 1﷮10﷯﷯ Let 𝑦= 𝑥 ﷮ 1﷮10﷯﷯ where 𝑥=1 , ∆𝑥=−0. 001 Now, 𝑦= 𝑥﷮ 1﷮10﷯﷯ Differentiating w.r.t. 𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥﷮ 1﷮10﷯﷯﷯﷮𝑑𝑥﷯= 1﷮10﷯ 𝑥﷮ −9﷮10﷯﷯= 1﷮10 𝑥﷮ 9﷮10﷯﷯﷯= 1﷮4 𝑥﷯﷮ 3﷮4﷯﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 Putting Values ∆𝑦= 1﷮10 𝑥﷮ 9﷮10﷯﷯﷯ ∆𝑥 ∆𝑦= 1﷮10 1﷯﷮ 9﷮10﷯﷯﷯ × −0. 001﷯ ∆𝑦= 1﷮10﷯ × −0. 001﷯ ∆𝑦=−0. 0001 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ ∆𝑦= 𝑥+∆𝑥﷯ ﷮ 1﷮10﷯﷯− 𝑥﷮ 1﷮10﷯﷯ Putting Values ∆𝑦= 1+ −0. 001﷯﷯﷮ 1﷮10﷯﷯− 1﷯﷮ 1﷮10﷯﷯ −0. 0001= 0. 999﷯﷮ 1﷮10﷯﷯−1 −0. 0001+1= 0. 999﷯﷮ 1﷮10﷯﷯ 0. 9999= 0. 999﷯﷮ 1﷮10﷯﷯ Thus, the Approximate Value of 0. 999﷯﷮ 1﷮10﷯﷯ is 𝟎. 𝟗𝟗𝟗𝟗 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (vi) (15)﷮ 1﷮4﷯﷯ Let 𝑦= 𝑥 ﷮ 1﷮4﷯﷯ where 𝑥=16 , ∆𝑥=−1 Now, 𝑦= 𝑥﷮ 1﷮4﷯﷯ Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥﷮ 1﷮4﷯﷯﷯﷮𝑑𝑥﷯= 1﷮4﷯ 𝑥﷮ 1 − 4﷮4﷯ ﷯= 1﷮4﷯ 𝑥﷮ −3﷮ 4﷯ ﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 1﷮4 𝑥﷯﷮ 3﷮4﷯﷯﷯ ∆𝑥 Putting Values ∆𝑦= 1﷮4 16﷯﷮ 3﷮4﷯﷯﷯ . −1﷯ ∆𝑦= 1﷮4 2﷮4﷯﷯﷮ 3﷮4﷯﷯﷯ −1﷯ ∆𝑦= −1﷮4 × 2﷮3﷯﷯ ∆𝑦= −1﷮4 × 8﷯ ∆𝑦= −1﷮32﷯ ∆𝑦=−0. 03125 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ ∆𝑦= 𝑥+∆𝑥﷯﷮ 1﷮4﷯﷯− 𝑥﷯﷮ 1﷮4﷯﷯ Putting Values −0. 03125= 16+ −1﷯﷯﷮ 1﷮4﷯﷯− 16﷯ ﷮ 1﷮4﷯﷯ −0. 03125= 16−1﷯﷮ 1﷮4﷯﷯− 2﷯ ﷮ 4 × 1﷮4﷯﷯ −0. 03125= 15﷯﷮ 1﷮4﷯﷯−2 −0. 03125+2= 15﷯﷮ 1﷮4﷯﷯ −0. 03125+2= 15﷯﷮ 1﷮4﷯﷯ 1. 969= 15﷯﷮ 1﷮4﷯﷯ Thus, Approximate Value of 15﷯﷮ 1﷮4﷯﷯ is 𝟏. 𝟗𝟔𝟗 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (vii) (26)﷮ 1﷮3﷯﷯ Let 𝑦= 𝑥﷯﷮ 1﷮3﷯﷯ where 𝑥=27 & ∆𝑥=−1 Now, 𝑦= 𝑥 ﷮ 1﷮3﷯﷯ Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥 ﷮ 1﷮3﷯﷯﷯﷮𝑑𝑥﷯= 1﷮3﷯ 𝑥 ﷮ 1﷮3﷯ − 1﷯ = 1﷮3﷯ 𝑥 ﷮ − 2﷮ 3﷯ ﷯= 1﷮3 𝑥 ﷮ 2﷮ 3﷯ ﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯∆𝑥 ∆𝑦= 1﷮3 𝑥 ﷮ 2﷮ 3﷯ ﷯﷯∆𝑥 Putting Values ∆𝑦= 1﷮3 27﷯﷮ 2﷮3﷯ ﷯ ﷯× −1﷯ ∆𝑦= 1﷮3 3﷮3﷯﷯﷮ 2﷮3﷯ ﷯ ﷯× −1﷯ ∆𝑦= −1﷮3 × 3﷮2 ﷯ ﷯ ∆𝑦= −1﷮3 × 9 ﷯ ∆𝑦= −1﷮27﷯ ∆𝑦=−0. 037037 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ ∆𝑦= 𝑥+∆𝑥﷯ ﷮ 1﷮3﷯﷯− 𝑥﷯﷮ 1﷮3﷯﷯ Putting Values −0. 037037= 27+ −1﷯﷯ ﷮ 1﷮3﷯﷯− 27﷯﷮ 1﷮3﷯﷯ −0. 037037= 26﷯ ﷮ 1﷮3﷯﷯− 3﷯﷮ 3 × 1﷮3﷯﷯ −0. 037037= 26﷯ ﷮ 1﷮3﷯﷯−3 −0. 037037+3= 26﷯ ﷮ 1﷮3﷯﷯ 2. 9629= 26﷯ ﷮ 1﷮3﷯﷯ Thus, Approximate Value of 26﷯﷮ 1﷮3﷯﷯ is 𝟐. 𝟗𝟔𝟐𝟗 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (viii) (255)﷮ 1﷮4﷯﷯ Let 𝑦= 𝑥﷯﷮ 1﷮4﷯﷯ where 𝑥=256 & ∆𝑥=−1 Now, 𝑦= 𝑥﷯﷮ 1﷮4﷯﷯ Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥 ﷮ 1﷮4﷯﷯﷯﷮𝑑𝑥﷯= 1﷮4﷯ 𝑥﷮ 1﷮4﷯ − 1﷯ = 1﷮4﷯ 𝑥﷮ −3﷮ 4﷯﷯= 1﷮4 𝑥﷮ 3﷮ 4﷯﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 1﷮4 𝑥﷮ 3﷮ 4﷯﷯﷯ ×∆𝑥 Putting Values ∆𝑦= 1﷮4 256﷯﷮ 3﷮4﷯﷯﷯ × −1﷯ ∆𝑦= − 1﷮4 4﷮4﷯﷯﷮ 3﷮4﷯﷯﷯ ∆𝑦= − 1﷮4 × 4﷮3﷯﷯ ∆𝑦= − 1﷮4 × 64﷯ ∆𝑦= − 1﷮256﷯ ∆𝑦=−0. 0039 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ ∆𝑦= 𝑥+∆𝑥﷯ ﷮ 1﷮4﷯﷯− 𝑥﷮ 1﷮4﷯﷯ Putting Values −0. 0039= 256+ −1﷯﷯ ﷮ 1﷮4﷯﷯− 256﷯﷮ 1﷮4﷯﷯ −0. 0039= 255﷯ ﷮ 1﷮4﷯﷯− 4﷮4﷯﷯﷮ 1﷮4﷯﷯ −0. 0039= 255﷯ ﷮ 1﷮4﷯﷯−4 −0. 0039= 255﷯ ﷮ 1﷮4﷯﷯−4 −0. 0039+4= 255﷯ ﷮ 1﷮4﷯﷯ 3. 9961= 255﷯ ﷮ 1﷮4﷯﷯ Thus, the Approximate Values of 255﷯ ﷮ 1﷮4﷯﷯ is 𝟑. 𝟗𝟗𝟔𝟏 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (ix) (82)﷮ 1﷮4﷯﷯ Let 𝑦= 𝑥﷯﷮ 1﷮4﷯﷯ where 𝑥=81 ∆𝑥=1 Now, 𝑦= 𝑥﷯﷮ 1﷮4﷯﷯ Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥﷮ 1﷮4﷯﷯﷯﷮𝑑𝑥﷯= 1﷮4﷯ 𝑥 ﷮ 1﷮4﷯ − 1﷯= 1﷮4﷯ 𝑥 ﷮ −3﷮ 4﷯﷯= 1﷮4 𝑥 ﷮ 3﷮4﷯﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 1﷮4 𝑥 ﷮ 3﷮4﷯﷯﷯ ∆𝑦 Putting Values ∆𝑦= 1﷮4 81﷯﷮ 3﷮4﷯﷯﷯ × 1﷯ ∆𝑦= 1﷮4 × 3﷮4 × 3﷮4﷯ ﷯﷯ × 1﷯ ∆𝑦= 1﷮4 × 3﷮3﷯﷯ ∆𝑦= 1﷮4 ×27﷯ ∆𝑦= 1﷮108﷯ ∆𝑦=0. 009 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ So, ∆𝑦= 𝑥+∆𝑥﷯﷮ 1﷮4﷯﷯ − 𝑥﷯﷮ 1﷮4﷯﷯ Putting Values 0. 009= 81+1﷯﷮ 1﷮4﷯﷯− 81﷯ ﷮ 1﷮4﷯﷯ 0. 009= 82﷯﷮ 1﷮4﷯﷯− 3﷯﷮4 × 1﷮4﷯ ﷯ 0. 009= 82﷯﷮ 1﷮4﷯﷯−3 0. 009+3= 82﷯﷮ 1﷮4﷯﷯ 3. 009= 82﷯﷮ 1﷮4﷯﷯ Thus, the Approximate Value of 82﷯﷮ 1﷮4﷯﷯ is 𝟑. 𝟎𝟎𝟗 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (x) (401)﷮ 1﷮2﷯﷯ Let 𝑦= 𝑥﷮ 1﷮2﷯﷯ where 𝑥=400 & ∆𝑥=1 Now, 𝑑𝑦﷮𝑑𝑥﷯= 1﷮2 ﷮𝑥﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 𝑑𝑦﷮2 ﷮𝑥﷯﷯ ∆𝑥 Putting Values ∆𝑦= 1﷮2 ﷮400﷯﷯ × 1﷯ ∆𝑦= 1﷮2 ﷮400﷯﷯ × 1﷯ ∆𝑦= 1﷮2 ﷮ 20﷮2﷯﷯﷯ ∆𝑦= 1﷮2 × 20﷯ ∆𝑦= 1﷮40﷯ ∆𝑦=0. 025 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ So, ∆𝑦= 𝑥+∆𝑥﷯﷮ 1﷮2﷯﷯− 𝑥﷯﷮ 1﷮2﷯﷯ Putting Values 0. 025= 400+1﷯﷮ 1﷮2 ﷯﷯− 400﷯ ﷮ 1﷮2﷯﷯ 0. 025= 401﷯﷮ 1﷮2﷯﷯− 20﷯﷮ 2 × 1﷮2﷯﷯ 0. 025= 401﷯﷮ 1﷮2﷯﷯−20 0. 025+20= 401﷯﷮ 1﷮2﷯﷯ 20. 025= 401﷯﷮ 1﷮2﷯﷯ 401﷯﷮ 1﷮2﷯﷯=20. 025 Thus, the Approximate Value of 401﷯﷮ 1﷮2﷯﷯ is 𝟐𝟎. 𝟎𝟐𝟓 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xi) (0.0037)﷮ 1﷮2﷯﷯ Let y = ﷮𝑥﷯ Let x = 0.0036 & △ x = 0.0001 Since y = ﷮𝑥﷯ 𝑑𝑦﷮𝑑𝑥﷯ = 𝑑( ﷮𝑥﷯)﷮𝑑𝑥﷯ = 1﷮2 ﷮𝑥﷯﷯ Now, ∆𝑦 = 𝑑𝑦﷮𝑑𝑥﷯ △x = 1﷮2 ﷮𝑥﷯﷯ (0.0001) = 1﷮2 ﷮0.0036﷯﷯ (0.0001) = 1﷮2 × 0.06﷯ × (0.0001) = 0.0001﷮0.12﷯ = 1﷮1200﷯ = 0.000833 Also, ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ So, ∆𝑦= 𝑥+∆𝑥﷯﷮ 1﷮2﷯﷯− 𝑥﷯﷮ 1﷮2﷯﷯ Putting Values 0. 000833= 0. 0036+0. 0001﷯﷮ 1﷮2﷯﷯− 0. 0036﷯﷮ 1﷮2﷯﷯ 0. 000833= 0. 0037﷯﷮ 1﷮2﷯﷯− 36﷮10000﷯﷯﷮ 1﷮2﷯﷯ 0. 000833= 0. 0037﷯﷮ 1﷮2﷯﷯− 6﷮100﷯﷯﷮ 2 × 1﷮2﷯﷯ 0. 000833= 0. 0037﷯﷮ 1﷮2﷯﷯− 0. 06﷯﷮2 × 1﷮2﷯ ﷯ 0. 000833= 0. 0037﷯﷮ 1﷮2﷯﷯− 0. 06﷯ 0. 000833+0. 06= 0. 0037﷯﷮ 1﷮2﷯﷯ 0. 060833= 0. 0037﷯﷮ 1﷮2﷯﷯ 0. 0037﷯﷮ 1﷮2﷯﷯=0. 060833 Thus, the Approximate Value of 0. 0037﷯﷮ 1﷮2﷯﷯=𝟎. 𝟎𝟔𝟎𝟖𝟑𝟑 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xii) (26.57)﷮ 1﷮3﷯﷯ Let 𝑦= 𝑥﷮ 1﷮3﷯﷯ where 𝑥=27 & ∆ 𝑥=−0. 43 Now, 𝑦= 𝑥﷮ 1﷮3﷯﷯ Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥﷮ 1﷮3﷯﷯﷯﷮𝑑𝑥﷯= 1﷮3﷯ 𝑥﷮ 1﷮3﷯ − 1﷯= 1﷮3﷯ 𝑥﷮ − 2﷮ 3﷯﷯= 1﷮3 𝑥﷮ 2﷮ 3﷯﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 1﷮3 𝑥﷮ 2﷮ 3﷯﷯﷯ × ∆𝑥 Putting Values ∆𝑦= 1﷮3 27﷯﷮ 2﷮ 3﷯﷯﷯ × −0. 43﷯ ∆𝑦= −0. 43﷮3 × 3﷮3 × 2﷮ 3﷯﷯﷯ ∆𝑦= −0. 43﷮3 × 3﷮2﷯﷯ ∆𝑦= −0. 43﷮3 × 9﷯ ∆𝑦= −0. 43﷮27﷯ ∆𝑦=−0. 015926 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ So, ∆𝑦= 𝑥+∆𝑥﷯ ﷮ 1﷮3﷯﷯− 𝑥﷮ 1﷮3﷯﷯ Putting Values −0. 015926= 27+ −0. 43﷯﷯﷮ 1﷮3﷯﷯− 27﷯﷮ 1﷮3﷯﷯ −0. 015926= 26. 57﷯﷮ 1﷮3﷯﷯− 27﷯﷮ 3 × 1﷮3﷯﷯ −0. 015926= 26. 57﷯﷮ 1﷮3﷯﷯−3 −0. 015926+3= 26. 53﷯﷮ 1﷮3﷯﷯ 2. 9843= 26. 53﷯﷮ 1﷮3﷯﷯ Thus, the Approximate Values of 26. 53﷯﷮ 1﷮3﷯﷯ is 𝟐. 𝟗𝟖𝟒𝟑 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xiii) (81.5)﷮ 1﷮4﷯﷯ Let 𝑦= 𝑥﷯﷮ 1﷮4﷯﷯ where 𝑥=81 & ∆𝑥=0. 5 Now, 𝑦= 𝑥﷮ 1﷮4﷯﷯ Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥﷮ 1﷮4﷯﷯﷯﷮𝑑𝑥﷯= 1﷮4﷯ 𝑥﷮ 1﷮4﷯ − 1﷯= 1﷮4﷯ 𝑥﷮ − 3﷮ 4﷯﷯ = 1﷮4 𝑥﷮ 3﷮4﷯﷯﷯ ∆ 𝑥 Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 𝑑𝑦﷮4 𝑥﷮ 3﷮4﷯﷯﷯ ∆𝑥 Putting Values ∆𝑦= 1﷮4 81﷯﷮ 3﷮4﷯﷯﷯ × 0. 5﷯ ∆𝑦= 0. 5﷮4 × 3﷮ 4﷯﷯﷮ 3﷮4﷯﷯﷯ ∆𝑦= 0. 5﷮4 × 3﷮ 3﷯﷯ ∆𝑦= 0. 5﷮4 × 27﷯ ∆𝑦= 0. 5﷮108﷯ ∆𝑦=0. 0046 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ So, ∆𝑦= 𝑥+∆𝑥﷯﷮ 1﷮4﷯﷯− 𝑥﷮ 1﷮4﷯﷯ Putting Values 0. 0046= 81+0. 5﷯﷮ 1﷮4﷯﷯− 81﷯﷮ 1﷮4﷯﷯ 0. 0046= 81. 5﷯﷮ 1﷮4﷯﷯− 3﷮4﷯﷯﷮ 1﷮4﷯﷯ 0. 0046= 81. 5﷯﷮ 1﷮4﷯﷯−3 0. 0046+3= 81. 5﷯﷮ 1﷮4﷯﷯ 3. 0046= 81. 5﷯﷮ 1﷮4﷯﷯ Thus, Approximate Value of 81. 5﷯﷮ 1﷮4﷯﷯ is 𝟑. 𝟎𝟎𝟒𝟔 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xiv) (3.968)﷮ 3﷮2﷯﷯ Let 𝑦= 𝑥﷮ 3﷮2﷯﷯ where 𝑥=4 & ∆𝑥=−0. 032 Now, 𝑦= 𝑥﷮ 3﷮2﷯﷯ Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥﷮ 3﷮2﷯﷯﷯﷮𝑑𝑥﷯ 𝑑𝑦﷮𝑑𝑥﷯= 3﷮2﷯ 𝑥 ﷮ 1﷮2﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 3﷮2﷯ 𝑥﷮ 1﷮2﷯﷯ ∆𝑥 Putting Values ∆𝑦= 3﷮2﷯ 4﷯﷮ 1﷮2﷯﷯ . −0. 032﷯ ∆𝑦= 3﷮2﷯ 2﷮2﷯﷯﷮ 1﷮2﷯﷯ . −0. 032﷯ ∆𝑦= 3﷮2﷯ ×2 × −0. 032﷯ ∆𝑦=3 × −0. 032﷯ ∆𝑦=−0. 096 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ So, ∆𝑦= 𝑥+∆𝑥﷯﷮ 3﷮2﷯﷯− 𝑥﷮ 3﷮2﷯﷯ Putting Values −0. 096= 4+ −0. 032﷯﷯﷮ 3﷮2﷯﷯− 4﷯﷮ 3﷮2﷯﷯ −0. 096= 4−0. 032﷯﷮ 3﷮2﷯﷯− 2﷯﷮2﷯﷮ × 3﷮2﷯﷯ −0. 096= 3. 968﷯﷮ 3﷮2﷯﷯− 2﷮3﷯ −0. 096= 3. 968﷯﷮ 3﷮2﷯﷯−8 −0. 096+8= 3. 968﷯﷮ 3﷮2﷯﷯ 7. 904= 3. 968﷯﷮ 3﷮2﷯﷯ 3. 968﷯﷮ 3﷮2﷯﷯=7.904 Thus, Approximate Values of 3. 968﷯﷮ 3﷮2﷯﷯ is 𝟕. 𝟗𝟎𝟒 Ex 6.4,1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (xv) (32.15)﷮ 1﷮5﷯﷯ Let 𝑦= 𝑥﷯﷮ 1﷮5﷯﷯ where 𝑥=32 & ∆𝑥=0. 15 Now, 𝑦= 𝑥﷯﷮ 1﷮5﷯﷯ Differentiating w.r.t.𝑥 𝑑𝑦﷮𝑑𝑥﷯= 𝑑 𝑥﷮ 1﷮5﷯﷯﷯﷮𝑑𝑥﷯= 1﷮5﷯ 𝑥﷮ 1﷮5﷯ − 1﷯ = 1﷮5﷯ 𝑥﷮ − 4﷮ 5﷯ ﷯= 1﷮5 𝑥﷮ 4﷮5﷯ ﷯﷯ Using ∆𝑦= 𝑑𝑦﷮𝑑𝑥﷯ ∆𝑥 ∆𝑦= 1﷮5 𝑥 ﷮ 4﷮5﷯﷯﷯ ∆𝑥 Putting Values ∆𝑦= 1﷮5 32﷯﷮ 4﷮5﷯﷯﷯ × 0. 15﷯ ∆𝑦= 1﷮5 2﷯﷮ 5 × 4﷮5﷯﷯﷯ × 0. 15﷯ ∆𝑦= 1﷮5 2﷯﷮ 4﷯﷯ × 0. 15﷯ ∆𝑦= 1﷮5 2﷯﷮ 4﷯﷯ × 0. 15﷯ ∆𝑦= 1﷮5 ×16﷯ ×0. 15 ∆𝑦= 0. 15 ﷮80﷯ ∆𝑦=0. 00187 We know that ∆𝑦=𝑓 𝑥+∆𝑥﷯−𝑓 𝑥﷯ So, ∆𝑦= 𝑥+∆𝑥﷯﷮ 1﷮5﷯﷯− 𝑥 ﷮ 1﷮5﷯﷯ Putting Values 0. 00187= 32+0. 15﷯﷮ 1﷮5﷯﷯− 32﷯﷮ 1﷮5﷯﷯ 0. 00187= 32. 15﷯﷮ 1﷮5﷯﷯− 2﷯﷮5 × 1﷮5﷯ ﷯ 0. 00187= 32. 15﷯﷮ 1﷮5﷯﷯−2 0. 00187+2= 32. 15﷯﷮ 1﷮5﷯﷯ 2. 00187= 32. 15﷯﷮ 1﷮5﷯﷯ 32. 15﷯﷮ 1﷮5﷯﷯=2. 00187 Hence Approximate Values of 32. 15﷯﷮ 1﷮5﷯﷯ is 𝟐. 𝟎𝟎𝟏𝟖𝟕

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He provides courses for Mathematics from Class 9 to 12. You can ask questions here.
Jail