Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12

Last updated at Dec. 8, 2016 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Application of Derivatives (AOD) Class 12
Transcript
Ex 6.4,7 If the radius of a sphere is measured as 9 m with an error of 0.03 m, then find the approximate error in calculating its surface area. Let r be the radius of the sphere Given r = 9 m Error in measurement of radius = ∆𝑟 ∆𝑟 = 0.03 m Surface area of the sphere = S = 4𝜋 𝑟2 We need to find the error in calculating the surface area ∆ S ∆ S = 𝑑𝑠𝑑𝑟×∆r = 𝑑(4𝜋 𝑟2)𝑑𝑟×∆r = 4𝜋 𝑑( 𝑟2)𝑑𝑟×∆r = 8𝜋r × 0.03 = 8𝜋(9) (0.03) = 2.16𝜋 hence the approximate error is 2.16𝝅 m2
Ex 6.4
Ex 6.4, 1 (ii) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (iii) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (iv) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (v) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (vi) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (vii) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (viii) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (ix) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (x) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (xi) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (xii) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (xiii) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (xiv) Not in Syllabus - CBSE Exams 2021
Ex 6.4, 1 (xv) Not in Syllabus - CBSE Exams 2021
Ex 6.4,2 Not in Syllabus - CBSE Exams 2021
Ex 6.4,3 Important Not in Syllabus - CBSE Exams 2021
Ex 6.4,4 Not in Syllabus - CBSE Exams 2021
Ex 6.4,5 Important Not in Syllabus - CBSE Exams 2021
Ex 6.4,6 Not in Syllabus - CBSE Exams 2021
Ex 6.4,7 Not in Syllabus - CBSE Exams 2021 You are here
Ex 6.4,8 Not in Syllabus - CBSE Exams 2021
Ex 6.4,9 Not in Syllabus - CBSE Exams 2021
About the Author