Question 8 (MCQ) - Approximations (using Differentiation) - Chapter 6 Class 12 Application of Derivatives
Last updated at April 16, 2024 by Teachoo
Approximations (using Differentiation)
Question 1 (ii) Deleted for CBSE Board 2024 Exams
Question 1 (iii) Deleted for CBSE Board 2024 Exams
Question 1 (iv) Deleted for CBSE Board 2024 Exams
Question 1 (v) Important Deleted for CBSE Board 2024 Exams
Question 1 (vi) Deleted for CBSE Board 2024 Exams
Question 1 (vii) Deleted for CBSE Board 2024 Exams
Question 1 (viii) Deleted for CBSE Board 2024 Exams
Question 1 (ix) Deleted for CBSE Board 2024 Exams
Question 1 (x) Deleted for CBSE Board 2024 Exams
Question 1 (xi) Important Deleted for CBSE Board 2024 Exams
Question 1 (xii) Deleted for CBSE Board 2024 Exams
Question 1 (xiii) Deleted for CBSE Board 2024 Exams
Question 1 (xiv) Important Deleted for CBSE Board 2024 Exams
Question 1 (xv) Deleted for CBSE Board 2024 Exams
Question 2 Deleted for CBSE Board 2024 Exams
Question 3 Important Deleted for CBSE Board 2024 Exams
Question 4 Deleted for CBSE Board 2024 Exams
Question 5 Important Deleted for CBSE Board 2024 Exams
Question 6 Deleted for CBSE Board 2024 Exams
Question 7 Deleted for CBSE Board 2024 Exams
Question 8 (MCQ) Important Deleted for CBSE Board 2024 Exams You are here
Question 9 (MCQ) Deleted for CBSE Board 2024 Exams
Approximations (using Differentiation)
Last updated at April 16, 2024 by Teachoo
Question 8 If f(x) = 3x2 + 15x + 5, then the approximate value of f (3.02) is (A) 47.66 (B) 57.66 (C) 67.66 (D) 77.66Let x = 3 and ∆x = 0.02 f’(x) = 6x + 15 Now, ∆y = f’(x) ∆x = (6x + 15) 0.02 Also, ∆y = f (x + ∆x) − f(x) f (x + ∆x) = f (x) + ∆y f (3.02) = 3x2 + 15x + 5 + (6x + 15) (0.02) Since x = 3 f (3.02) = 3(3)2 + 15(3) + 5 + (0.02)[6(3)+15] = (27 + 45 + 5) + 33(0.02) = 77 + 0.66 = 77.66 Hence, part (D) is the correct answer.