

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 6.4
Ex 6.4, 1 (ii) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (iii) Deleted for CBSE Board 2023 Exams You are here
Ex 6.4, 1 (iv) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (v) Important Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (vi) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (vii) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (viii) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (ix) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (x) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (xi) Important Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (xii) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (xiii) Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (xiv) Important Deleted for CBSE Board 2023 Exams
Ex 6.4, 1 (xv) Deleted for CBSE Board 2023 Exams
Ex 6.4,2 Deleted for CBSE Board 2023 Exams
Ex 6.4,3 Important Deleted for CBSE Board 2023 Exams
Ex 6.4,4 Deleted for CBSE Board 2023 Exams
Ex 6.4,5 Important Deleted for CBSE Board 2023 Exams
Ex 6.4,6 Deleted for CBSE Board 2023 Exams
Ex 6.4,7 Deleted for CBSE Board 2023 Exams
Ex 6.4,8 (MCQ) Important Deleted for CBSE Board 2023 Exams
Ex 6.4,9 (MCQ) Deleted for CBSE Board 2023 Exams
Last updated at April 15, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Ex 6.4, 1 Using differentials, find the approximate value of each of the following up to 3 places of decimal. (iii) √0.6 Let y = √𝑥 where x = 0.64 & △x = –0.04 Since y = √𝑥 𝑑𝑦/𝑑𝑥 = (𝑑(√𝑥))/𝑑𝑥 = 1/(2√𝑥) Now, ∆𝑦 = 𝑑𝑦/𝑑𝑥 △x = 1/(2√0.64) (–0.04) = 1/(2√(64/100)) (–0.04) = 1/(2 ×8/10) × (–0.04) = (−10 × 0.04)/16 = (−10 × 4)/(16 × 100) = –0.025 Also, ∆𝑦=𝑓(𝑥+∆𝑥)−𝑓(𝑥) Putting values ∆𝑦=√(𝑥+∆𝑥)−√𝑥 −0. 025=√(0.64−0.04)−√0.64 −0.025=√0.60−0.8 0.8 – 0. 025=√0.60 √0.60=0.775 Hence, approximate value of √0.60 is 0.775