Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ex 6.3

Ex 6.3, 1 (i)
Important

Ex 6.3, 1 (ii)

Ex 6.3, 1 (iii) Important

Ex 6.3, 1 (iv)

Ex 6.3, 2 (i)

Ex 6.3, 2 (ii) Important

Ex 6.3, 2 (iii)

Ex 6.3, 2 (iv) Important

Ex 6.3, 2 (v) Important

Ex 6.3, 3 (i) You are here

Ex 6.3, 3 (ii)

Ex 6.3, 3 (iii)

Ex 6.3, 3 (iv) Important

Ex 6.3, 3 (v)

Ex 6.3, 3 (vi)

Ex 6.3, 3 (vii) Important

Ex 6.3, 3 (viii)

Ex 6.3, 4 (i)

Ex 6.3, 4 (ii) Important

Ex 6.3, 4 (iii)

Ex 6.3, 5 (i)

Ex 6.3, 5 (ii)

Ex 6.3, 5 (iii) Important

Ex 6.3, 5 (iv)

Ex 6.3,6

Ex 6.3,7 Important

Ex 6.3,8

Ex 6.3,9 Important

Ex 6.3,10

Ex 6.3,11 Important

Ex 6.3,12 Important

Ex 6.3,13

Ex 6.3,14 Important

Ex 6.3,15 Important

Ex 6.3,16

Ex 6.3,17

Ex 6.3,18 Important

Ex 6.3,19 Important

Ex 6.3, 20 Important

Ex 6.3,21

Ex 6.3,22 Important

Ex 6.3,23 Important

Ex 6.3,24 Important

Ex 6.3,25 Important

Ex 6.3, 26 Important

Ex 6.3, 27 (MCQ)

Ex 6.3,28 (MCQ) Important

Ex 6.3,29 (MCQ)

Last updated at June 12, 2023 by Teachoo

Ex 6.3, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum & the local minimum values, as the case may be: (i) f (đ„)=đ„2 f(đ„)=đ„^2 Finding fâ(x) fâ(x) = 2x Putting fâ(x) = 0 2x = 0 x = 0 Finding fââ(x) fâ(x) = 2x Differentiating again fââ(x) = 2 Since fââ(x) > 0 for x = 0 So, f(x) is minimum at x = 0 Minimum value of f(x) at x = 0 f(x) = x2 f(0) = 02 = 0 So, Minimum value of f(x) = 0 There is no maximum value