# Ex 6.5,25 - Chapter 6 Class 12 Application of Derivatives

Last updated at Dec. 8, 2016 by Teachoo

Last updated at Dec. 8, 2016 by Teachoo

Transcript

Ex 6.5,25 Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is tan –1 2 Let 𝑙 be the slant height & θ be the semi vertical angle of the cone. Now, Height of cone = h = 𝑙 cos θ Radius of cone = r = 𝑙 sin θ We need to maximize volume of cone V = 13 𝜋 𝑟2ℎ V = 13𝜋 𝑙2sin2𝜃 l cos 𝜃 V= 13𝜋 𝑙3sin2𝜃 cos 𝜃 Differentiating 𝑑𝑣𝑑𝜃 = 13𝜋 𝑙3 (2 sin 𝜃 cos 𝜃 . cos 𝜃 + sin2 𝜃 (sin 𝜃)) 𝑑𝑣𝑑𝜃 = 13𝜋 𝑙3 2 sin𝜃 cos2𝜃− sin3𝜃 𝑑𝑣𝑑𝜃 = 13𝜋 𝑙3 (2 sin 𝜃 cos2 𝜃 sin3 𝜃) 𝑑𝑣𝑑𝜃 = 13 𝜋 𝑙3 sin 𝜃 (2 cos2 𝜃 − sin2 𝜃) 𝑑𝑣𝑑𝜃 = 13 𝜋 𝑙3 sin 𝜃 ( 2 cos𝜃+ sin𝜃)( 2 cos 𝜃 − sin 𝜃) 𝑑𝑣𝑑𝜃 = 13 𝜋 𝑙3 sin 𝜃 cos 𝜃 ( 2 cos𝜃+ sin𝜃) cos𝜃 × cos 𝜃 ( 2 cos𝜃− sin𝜃) cos𝜃 𝑑𝑣𝑑𝜃 = 13 𝜋 𝑙3 sin 𝜃 cos2 𝜃 ( 2+ tan 𝜃 )( 2 − tan 𝜃) Putting 𝑑𝑣𝑑𝜃 = 0 13 𝜋 𝑙3 sin 𝜃 cos2 𝜃 ( 2+ tan 𝜃 )( 2 − tan 𝜃) = 0 sin 𝜃 cos2 𝜃 ( 2+ tan 𝜃 )( 2 − tan 𝜃) = 0 The value is either maxima or minima. Finding maxima or minima by first derivative test 𝑑𝑣𝑑𝜃 = 13𝜋 𝑙3 sin 𝜃 cos2 𝜃 ( 2 + tan𝜃) ( 2 − tan 𝜃) 𝑑𝑣𝑑𝜃 = 13𝜋 𝑙3 sin 𝜃 cos2 𝜃 ( 2 + tan𝜃) ( 2 − tan 𝜃) Since 𝑑𝑣𝑑θ = changes sign from (+) ve to (−) ve 𝜽 = tan− 1 𝟐 is the maxima. Hence proved

Ex 6.5

Ex 6.5,1
Important

Ex 6.5,2

Ex 6.5,3

Ex 6.5,4

Ex 6.5,5 Important

Ex 6.5,6

Ex 6.5,7 Important

Ex 6.5,8

Ex 6.5,9

Ex 6.5,10

Ex 6.5,11 Important

Ex 6.5,12

Ex 6.5,13

Ex 6.5,14

Ex 6.5,15

Ex 6.5,16

Ex 6.5,17

Ex 6.5,18 Important

Ex 6.5,19

Ex 6.5,20 Important

Ex 6.5,21

Ex 6.5,22

Ex 6.5,23 Important

Ex 6.5,24

Ex 6.5,25 You are here

Ex 6.5,26 Important

Ex 6.5,27

Ex 6.5,28 Important

Ex 6.5,29

Chapter 6 Class 12 Application of Derivatives

Serial order wise

About the Author

Davneet Singh

Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 8 years. He provides courses for Maths and Science at Teachoo. You can check his NCERT Solutions from Class 6 to 12.