


Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 6.3
Ex 6.3, 1 (ii)
Ex 6.3, 1 (iii) Important
Ex 6.3, 1 (iv)
Ex 6.3, 2 (i)
Ex 6.3, 2 (ii) Important
Ex 6.3, 2 (iii)
Ex 6.3, 2 (iv) Important
Ex 6.3, 2 (v) Important
Ex 6.3, 3 (i)
Ex 6.3, 3 (ii)
Ex 6.3, 3 (iii)
Ex 6.3, 3 (iv) Important
Ex 6.3, 3 (v)
Ex 6.3, 3 (vi)
Ex 6.3, 3 (vii) Important
Ex 6.3, 3 (viii)
Ex 6.3, 4 (i)
Ex 6.3, 4 (ii) Important
Ex 6.3, 4 (iii)
Ex 6.3, 5 (i)
Ex 6.3, 5 (ii)
Ex 6.3, 5 (iii) Important
Ex 6.3, 5 (iv)
Ex 6.3,6
Ex 6.3,7 Important
Ex 6.3,8
Ex 6.3,9 Important
Ex 6.3,10
Ex 6.3,11 Important
Ex 6.3,12 Important
Ex 6.3,13
Ex 6.3,14 Important
Ex 6.3,15 Important
Ex 6.3,16 You are here
Ex 6.3,17
Ex 6.3,18 Important
Ex 6.3,19 Important
Ex 6.3, 20 Important
Ex 6.3,21
Ex 6.3,22 Important
Ex 6.3,23 Important
Ex 6.3,24 Important
Ex 6.3,25 Important
Ex 6.3, 26 Important
Ex 6.3, 27 (MCQ)
Ex 6.3,28 (MCQ) Important
Ex 6.3,29 (MCQ)
Last updated at June 12, 2023 by Teachoo
Ex 6.3, 16 Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.Let first number be 𝑥 Now, First number + second number =16 𝑥 + second number = 16 second number = 16 – 𝑥 Now, Sum of Cubes = (𝑓𝑖𝑟𝑠𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 )^3+(𝑠𝑒𝑐𝑜𝑛𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 )^3 Let S(𝑥) = 𝑥3 + (16−𝑥)^3 We Need to Find Minimum Value of s(𝑥) Finding S’(𝑥) S’(𝑥)= 𝑑(𝑥^3+ (16 − 𝑥)^3 )/𝑑𝑥 = 3𝑥2 + 3(16−𝑥)^2. (0−1) = 3𝑥2 + 3(16−𝑥)^2 (−1) = 3𝑥2 – 3((16)^2+(𝑥)^2−2(16)(𝑥)) = 3𝑥2 – 3(256+𝑥^2−32𝑥) = 3𝑥2 – 3(256)−3𝑥^2+3(32)𝑥 = –3(256−32𝑥) Putting S’(𝑥)=0 –3(256−32𝑥)=0 256 – 32𝑥 = 0 32𝑥 = 256 𝑥 = 256/32 𝑥 = 8 Finding S’’(𝑥) S’(𝑥)=−3(256−32𝑥) S’’(𝑥)=𝑑(−3(256 − 32𝑥))/𝑑𝑥 = –3 𝑑(256 − 32𝑥)/𝑑𝑥 = –3 [0−32] = 96 > 0 Since S’’(𝑥)>0 for 𝑥 = 8 𝑥 = 8 is point of local minima & S(𝑥) is minimum at 𝑥 = 8 Hence, 1st number = x = 8 & 2nd number = 16 – x = 16 – 8 = 8