Slide19.JPG

Slide20.JPG
Slide21.JPG
Slide22.JPG

Share on WhatsApp

Transcript

Ex 6.3, 3 Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be: (vii) g (š‘„) = 1/(š‘„^2 + 2)Finding g’(š’™) g’(š‘„)=š‘‘/š‘‘š‘„ (1/(š‘„^2 + 2)) g’(š‘„)=(š‘‘(š‘„^2 + 2)^(āˆ’1))/š‘‘š‘„ g’(š‘„)=āˆ’1(š‘„^2+2)^(āˆ’1āˆ’1) Ɨ (2š‘„+0) g’(š‘„)=āˆ’2š‘„(š‘„^2+2)^(āˆ’2) g′(š‘„)=( āˆ’2š‘„ )/(š‘„^2 + 2)^2 Putting g’(š’™)=šŸŽ ( āˆ’2š‘„ )/(š‘„^2+2)^2 =0 –2š‘„=0 Ɨ(š‘„^2+2)^2 –2š‘„=0 š‘„=0 Finding g’’(š’™) g’(š‘„)=(āˆ’2š‘„)/(š‘„^2 + 2)^2 g’’(š‘„)=(š‘‘(āˆ’2š‘„)/š‘‘š‘„ . 怖 (š‘„^2 + 2)怗^2 āˆ’ (š‘‘(š‘„^2 + 2)^2)/š‘‘š‘„ . (āˆ’2š‘„))/((š‘„^2 + 2)^2 )^2 =(āˆ’2 (š‘„^2 + 2)^2āˆ’2 (š‘„^2 + 2)^(2āˆ’1).š‘‘(š‘„^2 + 2)/š‘‘š‘„ . (āˆ’2š‘„))/((š‘„^2 + 2)^2 )^2 =(āˆ’2 (š‘„^2 + 2)^2āˆ’2 (š‘„^2 + 2)(2š‘„ + 0) (āˆ’2š‘„))/(š‘„^2 + 2)^4 =(āˆ’2 (š‘„^2 + 2)^2āˆ’2 (š‘„^2 + 2)(2š‘„) (āˆ’2š‘„))/(š‘„^(2 )+ 2)^4 =(āˆ’2 (š‘„^2 + 2)^2+ 8š‘„^2 (š‘„^2 + 2))/(š‘„^(2 )+ 2)^4 =(āˆ’2 (š‘„^2 + 2)[(š‘„^(2 )+ 2) āˆ’ 4š‘„^2 ])/(š‘„^2 + 2)^4 =(āˆ’2 (š‘„^2 + 2)(āˆ’3š‘„^2 + 2))/(š‘„^2 + 2)^4 =(āˆ’2(āˆ’3š‘„^2 + 2))/(š‘„^(2 )+ 2)^3 Putting x = 0 in g’’(x) g’’(0)=(āˆ’2(āˆ’3(0) + 2))/(0^2 + 2)^3 =(āˆ’2(0 + 2))/(2)^3 =(āˆ’4)/8=(āˆ’1)/2 Hence g’’(š‘„)<0 when š‘„ = 0 ∓ š‘„ = 0 is point of local maxima Thus, g(š‘„) is maximum at š’™ = 0 Maximum value of g(š’™) at x = 0 g(š‘„)=1/(š‘„^(2 )+ 2) g(0)=1/(0^2 + 2) = 1/2 Maximum value is šŸ/šŸ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo