Β  Β  Β  Example 42 - Evaluate x dx / a2 cos2 x + b2 sin2 x - Examples - Examples

part 2 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 6 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 7 - Example 42 - Examples - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Example 42 Evaluate ∫_0^πœ‹β–’(π‘₯ 𝑑π‘₯)/(π‘Ž^2 cos^2⁑〖π‘₯ + 𝑏^2 γ€— sin^2⁑π‘₯ )Let I= ∫_0^πœ‹β–’γ€–π‘₯/(π‘Ž^2 π‘π‘œπ‘ ^2 π‘₯ + 𝑏^2 𝑠𝑖𝑛^2 π‘₯) 𝑑π‘₯γ€— ∴ I=∫_0^πœ‹β–’γ€–((πœ‹ βˆ’ π‘₯))/(π‘Ž^2 π‘π‘œπ‘ ^2 (πœ‹ βˆ’ π‘₯) + 𝑏^2 𝑠𝑖𝑛^2 (πœ‹ βˆ’ π‘₯) ) 𝑑π‘₯γ€— I=∫_0^πœ‹β–’γ€–(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 [π‘π‘œπ‘ (πœ‹ βˆ’ π‘₯)]^2 + 𝑏^2 [𝑠𝑖𝑛(πœ‹ βˆ’ π‘₯)]^2 ) 𝑑π‘₯γ€— I=∫_0^πœ‹β–’γ€–(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 [βˆ’ π‘π‘œπ‘  π‘₯]^2 + 𝑏^2 [𝑠𝑖𝑛 π‘₯]^2 ) 𝑑π‘₯γ€— I=∫_0^πœ‹β–’γ€–(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯γ€— Adding (1) and (2) i.e. (1) + (2) I+I=∫_0^πœ‹β–’γ€–π‘₯/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯γ€—+∫1β–’(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯ 2I=∫_0^πœ‹β–’(π‘₯ + πœ‹ βˆ’ π‘₯)/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯ 2I=∫_0^πœ‹β–’(πœ‹ )/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯ I=πœ‹/2 ∫_0^πœ‹β–’γ€–1/(π‘Ž^2 cos^2⁑π‘₯ + 𝑏^2 sin^2⁑π‘₯ ) 𝑑π‘₯γ€— Dividing numerator and denominator by π‘π‘œπ‘ ^2 π‘₯, we get I=πœ‹/2 ∫_0^πœ‹β–’γ€–(1/cos^2⁑π‘₯ )/((π‘Ž^2 cos^2⁑〖π‘₯ + 𝑏^2 sin^2⁑π‘₯ γ€—)/cos^2⁑π‘₯ ) 𝑑π‘₯γ€— I=πœ‹/2 ∫_0^πœ‹β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/((π‘Ž^2 cos^2⁑π‘₯)/cos^2⁑π‘₯ + (𝑏^2 sin^2⁑π‘₯)/cos^2⁑π‘₯ ) 𝑑π‘₯γ€— I=πœ‹/2 ∫_0^πœ‹β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) 𝑑π‘₯γ€— Let 𝑓(π‘₯)=sec^2⁑π‘₯/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) and a = Ο€ Now, 𝑓(2π‘Žβˆ’π‘₯)=sec^2⁑(πœ‹ βˆ’ π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑(πœ‹ βˆ’ π‘₯) ) 𝑓(2π‘Žβˆ’π‘₯)=[βˆ’π‘ π‘’π‘ π‘₯]^2/(π‘Ž^2 + 𝑏^2 [βˆ’tan⁑π‘₯ ]^2 ) 𝑓(2π‘Žβˆ’π‘₯)=(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) Therefore, 𝑓(π‘₯)=𝑓(2π‘Žβˆ’π‘₯) Therefore, I=πœ‹/2 ∫_0^πœ‹β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) 𝑑π‘₯γ€— =πœ‹/2 Γ— 2 ∫_0^(πœ‹/2)β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) 𝑑π‘₯γ€— =πœ‹βˆ«_0^(πœ‹/2)β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑏^2 tan^2⁑π‘₯ ) 𝑑π‘₯γ€— Let 𝑏 tan⁑〖π‘₯=𝑑〗 Differentiating both sides w.r.t. π‘₯ 𝑏 𝑠𝑒𝑐^2 π‘₯ 𝑑π‘₯=𝑑𝑑 𝑑𝑑=𝑑𝑑/(𝑏^2 𝑠𝑒𝑐^2 π‘₯) Putting the values of tan π‘₯ and 𝑑π‘₯ , we get 𝐼=πœ‹βˆ«1_0^(πœ‹/2)β–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑑^2 ) . 𝑑π‘₯γ€— 𝐼=πœ‹ ∫1_0^βˆžβ–’γ€–(𝑠𝑒𝑐^2 π‘₯)/(π‘Ž^2 + 𝑑^2 ) .𝑑𝑑/(𝑏 𝑠𝑒𝑐^2 π‘₯)γ€— 𝐼=πœ‹/𝑏 ∫1_0^βˆžβ–’π‘‘π‘‘/(π‘Ž^2 + 𝑑^2 ) 𝐼= γ€–πœ‹/𝑏 [1/π‘Ž tan^(βˆ’1)⁑(𝑑/π‘Ž) ]γ€—_0^∞ Putting limits, I=πœ‹/𝑏 [1/π‘Ž γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (∞/π‘Ž)βˆ’1/π‘Ž γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1) (0/π‘Ž)] I =πœ‹/𝑏 [γ€–1/π‘Ž tan^(βˆ’1)〗⁑〖(∞)βˆ’1/π‘Ž tan^(βˆ’1)⁑(0) γ€— ] I =πœ‹/𝑏 (1/π‘Ž (πœ‹/2)βˆ’0) I =𝝅^𝟐/πŸπ’‚π’ƒ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo