Example 41 - Evaluate integral |x sin (pi x)| dx - Limit -1 to 3pi/2 - Examples

part 2 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 6 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 7 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 8 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 9 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 10 - Example 41 - Examples - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Example 41 (Introduction) Evaluate ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹ π‘₯) | 𝑑π‘₯ To find sign of |π‘₯ sin⁑(πœ‹ π‘₯) | in the interval, let us check sign of x and sin⁑〖 (πœ‹π‘₯) γ€—separately π‘₯ > 0 & π‘₯ sin⁑〖 (πœ‹π‘₯) γ€—> 0 π‘₯ < 0 & π‘₯ sin⁑〖 (πœ‹π‘₯) γ€—> 0 Sign of x We have Interval βˆ’1< π‘₯ < 3/2 Sign of 𝐬𝐒𝐧⁑〖(𝝅𝒙)γ€— Here, βˆ’1≀π‘₯≀3/2 βˆ’πœ‹ β‰€πœ‹π‘₯≀3πœ‹/2 Let πœƒ=πœ‹π‘₯ ∴ βˆ’πœ‹ ≀θ≀3πœ‹/2 From graph it is seen, Now, Sign for π‘₯ sin⁑(πœ‹π‘₯) in interval –1 ≀ x ≀ 3/2 is So, we can write |π‘₯ 𝑠𝑖𝑛 (Ο€π‘₯)|={β–ˆ(π‘₯ sin⁑〖 (πœ‹π‘₯)γ€— βˆ’1 ≀ π‘₯ ≀ 1@&βˆ’π‘₯ sin⁑〖 (πœ‹π‘₯)γ€— 1 ≀ π‘₯ ≀ 3/2)─ Example 41 Evaluate ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹ π‘₯) | 𝑑π‘₯ Solving ∫1▒〖𝒙 π’”π’Šπ’β‘γ€– (𝝅𝒙) 𝒅𝒙〗 γ€— separately ∫1β–’γ€–π‘₯ sin⁑〖 (πœ‹π‘₯) 𝑑π‘₯γ€— γ€— = x ∫1β–’sin⁑〖(πœ‹π‘₯)βˆ’βˆ«1β–’(𝑑(π‘₯)/𝑑π‘₯ ∫1β–’sin⁑〖(πœ‹π‘₯) γ€— ) γ€— 𝑑π‘₯ = x ((βˆ’cos⁑〖(πœ‹π‘₯))γ€—)/πœ‹βˆ’βˆ«1β–’1((βˆ’cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹) 𝑑π‘₯ = (βˆ’ π‘₯ cos⁑〖(πœ‹π‘₯) γ€—)/πœ‹+∫1β–’cos⁑〖(πœ‹π‘₯)γ€—/πœ‹ 𝑑π‘₯ = (βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+ sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 ∫_(βˆ’πŸ)^πŸβ–’γ€–π’™ 𝐬𝐒𝐧⁑〖𝝅𝒙 𝒅𝒙〗 γ€— = [(βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 ]_(βˆ’1)^1 = ((βˆ’1 cosβ‘πœ‹)/πœ‹+sinβ‘πœ‹/πœ‹^2 ) βˆ’((βˆ’(βˆ’1)cos⁑〖(βˆ’πœ‹)γ€—)/πœ‹+sin⁑〖(βˆ’πœ‹)γ€—/πœ‹^2 ) = ((βˆ’1 Γ— (βˆ’1))/πœ‹+0/πœ‹^2 ) βˆ’(cosβ‘πœ‹/πœ‹+γ€–βˆ’ sinγ€—β‘πœ‹/πœ‹^2 ) = (1/πœ‹+0)βˆ’((βˆ’1)/πœ‹+0) = 1/πœ‹+1/πœ‹ = 2/πœ‹ Putting limits ∫_𝟏^(πŸ‘/𝟐)▒〖𝒙 𝐬𝐒𝐧⁑〖𝝅𝒙 𝒅𝒙〗 γ€— = [(βˆ’π‘₯ cos⁑〖(πœ‹π‘₯)γ€—)/πœ‹+sin⁑〖(πœ‹π‘₯)γ€—/πœ‹^2 ]_1^(3/2) = (((βˆ’3)/2 cos⁑(3πœ‹/2))/πœ‹+sin⁑((3πœ‹ )/2)/πœ‹^2 )βˆ’((βˆ’1 cosβ‘πœ‹)/πœ‹+sinβ‘πœ‹/πœ‹^2 ) = (0+((βˆ’1))/πœ‹^2 )βˆ’((βˆ’1 Γ— βˆ’1)/πœ‹+0/πœ‹^2 ) = (βˆ’1)/πœ‹^2 βˆ’1/πœ‹ Now, ∴ ∫_(βˆ’1)^(3/2)β–’|π‘₯ sin⁑(πœ‹π‘₯) | 𝑑π‘₯ = ∫_(βˆ’1)^1β–’γ€–π‘₯ sin⁑〖 (πœ‹π‘₯) 𝑑π‘₯ βˆ’βˆ«_1^(3/2)β–’γ€–π‘₯ 𝑠𝑖𝑛〗〗 γ€—(πœ‹π‘₯) 𝑑π‘₯ = 2/πœ‹βˆ’((βˆ’1)/πœ‹^2 βˆ’1/πœ‹) = 2/πœ‹+1/πœ‹^2 +1/πœ‹ = πŸ‘/𝝅+𝟏/𝝅^𝟐

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo