Β  Β  Β  Example 39 - Evaluate integral [root cot x + root tan x] dx - Examples

part 2 - Example 39 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Example 39 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Example 39 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Example 39 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 6 - Example 39 - Examples - Serial order wise - Chapter 7 Class 12 Integrals part 7 - Example 39 - Examples - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Example 39 Evaluate ∫1β–’[√(cot⁑π‘₯ )+√(tan⁑π‘₯ )] 𝑑π‘₯ ∫1β–’[√(cot⁑π‘₯ )+√(tan⁑π‘₯ )] 𝑑π‘₯ =∫1β–’[√(cot⁑π‘₯ )+1/√(cot⁑π‘₯ )] 𝑑π‘₯ =∫1β–’[(cot⁑π‘₯ + 1)/√(cot⁑π‘₯ )] 𝑑π‘₯ =∫1β–’[√(tan⁑π‘₯ ) (cot⁑π‘₯+1)] 𝑑π‘₯ Let tan⁑π‘₯=𝑑^2 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯. sec^2 π‘₯=2𝑑 𝑑𝑑/𝑑π‘₯ 1+tan^2 π‘₯=2𝑑 . 𝑑𝑑/𝑑π‘₯ 1+(𝑑^2 )^2=2𝑑 . 𝑑𝑑/𝑑π‘₯ 1+𝑑^4=2𝑑 . 𝑑𝑑/𝑑π‘₯ (1+𝑑^4 ) 𝑑π‘₯=2𝑑 𝑑𝑑 𝑑π‘₯=2𝑑/(1 + 𝑑^4 ) . 𝑑𝑑 Putting values of t & dt, we get ∫1β–’[√(tan⁑π‘₯ ) (cot⁑π‘₯+1)] 𝑑π‘₯ = ∫1β–’[√(𝑑^2 ) (cot⁑π‘₯+1)] 𝑑π‘₯ = ∫1β–’[√(𝑑^2 ) (1/tan⁑π‘₯ +1)] 𝑑π‘₯ = ∫1▒𝑑[1/𝑑^2 +1] 𝑑π‘₯ = ∫1▒𝑑[(1 + 𝑑^2)/𝑑^2 ] Γ—2𝑑/(1 + 𝑑^4 ) . 𝑑𝑑 = ∫1β–’2[(1 + 𝑑^2)/(1 + 𝑑^4 )] 𝑑𝑑 = 2∫1β–’(1 + 𝑑^2)/(1 + 𝑑^4 ) 𝑑𝑑 Dividing numerator and denominator by 𝑑^2 = 2 ∫1β–’((1 + 𝑑^2)/𝑑^2 )/((1 + 𝑑^4)/𝑑^2 ) . 𝑑𝑑 = 2 ∫1β–’(1/𝑑^2 + 1)/(1/𝑑^2 + 𝑑^2 ) . 𝑑𝑑 = 2 ∫1β–’(1/𝑑^2 + 1)/(1/𝑑^2 + 𝑑^2 ) . 𝑑𝑑 = 2 ∫1β–’(1 + 1/𝑑^2 )/( 𝑑^2 + 1/𝑑^2 + 2 βˆ’ 2) . 𝑑𝑑 = 2 ∫1β–’(1 + 1/𝑑^2 )/( (𝑑)^2 + (1/𝑑)^2βˆ’ 2 (𝑑) (1/𝑑) + 2) . 𝑑𝑑 = 2 ∫1β–’(1 + 1/𝑑^2 )/((𝑑 βˆ’ 1/𝑑)^2 + 2) . 𝑑𝑑 = 2 ∫1β–’(1 + 1/𝑑^2 )/((𝑑 βˆ’ 1/𝑑)^2 +(√2 )^2 ) . 𝑑𝑑 Let π‘‘βˆ’1/𝑑=𝑦 Differentiating both sides 𝑀.π‘Ÿ.𝑑.π‘₯. 1+ 1/𝑑^2 = 𝑑𝑦/𝑑𝑑 𝑑𝑑 =𝑑𝑦/((1 + 1/𝑑^2 ) ) Putting the values of (1/t βˆ’t) and dt, we get = 2 ∫1β–’(1 + 1/𝑑^2 )/(𝑦^2 +(√2 )^2 ) . 𝑑𝑑 = 2 ∫1β–’((1 + 1/𝑑^2 ))/(𝑦^2 + (√2 )^2 ) Γ— 𝑑𝑦/((1 + 1/𝑑^2 ) ) = 2 ∫1β–’1/(𝑦^2 + (√2 )^2 ) . 𝑑𝑦 = 2(1/√2 tan^(βˆ’1)⁑〖 𝑦/√2γ€— +𝐢1) = 2/√2 tan^(βˆ’1)⁑〖 𝑦/√2γ€— +2𝐢1 = √2 tan^(βˆ’1)⁑〖 (1/𝑑 βˆ’ 𝑑)/√2γ€— +2𝐢1 = √2 tan^(βˆ’1)⁑〖 (𝑑^2 βˆ’ 1)/(√2 𝑑)γ€— +𝐢 = √2 tan^(βˆ’1)⁑((tan⁑π‘₯ βˆ’ 1)/(√2 √(tan⁑π‘₯ )))+𝐢 = √𝟐 〖𝒕𝒂𝒏〗^(βˆ’πŸ)⁑((𝒕𝒂𝒏⁑𝒙 βˆ’ 𝟏)/(√(𝟐 𝒕𝒂𝒏⁑𝒙 ) ))+π‘ͺ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo