Β  Example 35 - Evaluate integral cos 6x root 1 + sin 6x dx - Examples

part 2 - Example 35 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Example 35 - Examples - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Example 35 Evaluate ∫1β–’cos⁑〖6π‘₯ √(1+sin⁑6π‘₯ )γ€— 𝑑π‘₯ ∫1β–’cos⁑〖6π‘₯ √(1+sin⁑6π‘₯ )γ€— 𝑑π‘₯ Put 𝑑 = √(1+sin⁑6π‘₯ ) 𝑑^2 = 1+sin⁑6π‘₯ Differentiate 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑𝑑^2)/𝑑π‘₯=𝑑/𝑑π‘₯ (1+sin⁑6π‘₯ ) 2𝑑. 𝑑𝑑/𝑑π‘₯=6 cos 6 π‘₯ (2𝑑 𝑑𝑑)/(6 cos⁑6π‘₯ )=𝑑π‘₯ Therefore, ∫1β–’cos⁑〖6π‘₯ √(1+sin⁑6π‘₯ )γ€— =∫1β–’cos⁑〖6π‘₯ 𝑑〗 . ( 2 𝑑 𝑑𝑑)/γ€–6 cos〗⁑6π‘₯ =∫1▒𝑑^2/3⁑𝑑𝑑 =1/3 ∫1▒𝑑^2⁑𝑑𝑑 =1/3 𝑑^(2 + 1)/(2 + 1) + 𝐢 =1/3 𝑑^3/3 + 𝐢 = 𝑑^3/9 + 𝐢 Putting back 𝑑 = √(1+𝑠𝑖𝑛⁑6π‘₯ ) = (√(1 + sin⁑6π‘₯ ))^3/9 + 𝐢 = (1 + sin⁑6π‘₯ )^(1/2 Γ— 3)/9 + 𝐢 = 𝟏/πŸ— (𝟏 + π’”π’Šπ’β‘πŸ”π’™ )^(πŸ‘/𝟐)+π‘ͺ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo