Example 32 - Evaluate integral sin4 x / sin4 x + cos4 x dx - Examples

part 2 - Example 32 - Examples - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Example 32 Evaluate ∫_0^(πœ‹/2)β–’sin^4⁑π‘₯/(sin^4⁑π‘₯ + cos^4⁑π‘₯ ) 𝑑π‘₯ Let I =∫_0^((πœ‹ )/2)β–’γ€–(〖𝑠𝑖𝑛〗^4 π‘₯)/〖〖𝑠𝑖𝑛〗^4 π‘₯〗⁑〖+ γ€–π‘π‘œπ‘ γ€—^4 π‘₯γ€— 𝑑π‘₯γ€— ∴ I =∫_0^((πœ‹ )/2)β–’sin^4⁑(πœ‹/2 βˆ’ π‘₯)/(〖〖𝑠𝑖𝑛〗^4 π‘₯〗⁑〖 (πœ‹/2 βˆ’ π‘₯) γ€—+ γ€–γ€–π‘π‘œπ‘ γ€—^4 π‘₯〗⁑(πœ‹/2 βˆ’ π‘₯) ) 𝑑π‘₯ I = ∫_0^((πœ‹ )/2)β–’(γ€–π‘π‘œπ‘ γ€—^4 π‘₯)/γ€–γ€–π‘π‘œπ‘ γ€—^4 π‘₯〗⁑〖+〖𝑠𝑖𝑛〗^4 π‘₯γ€— 𝑑π‘₯ Adding (1) and (2) i.e. (1) + (2) I + I = ∫_0^((πœ‹ )/2)β–’(〖𝑠𝑖𝑛〗^4 π‘₯)/(〖𝑠𝑖𝑛〗^4 π‘₯ +γ€–π‘π‘œπ‘ γ€—^4 π‘₯) 𝑑π‘₯+∫_0^(πœ‹/2)β–’γ€–(π‘π‘œπ‘  π‘₯)/(〖𝑠𝑖𝑛〗^4 π‘₯ +γ€–π‘π‘œπ‘ γ€—^4 π‘₯).γ€— 𝑑π‘₯ 2I = ∫_0^((πœ‹ )/2)β–’γ€–(〖𝑠𝑖𝑛〗^4 π‘₯ + γ€–π‘π‘œπ‘ γ€—^4 π‘₯)/(〖𝑠𝑖𝑛〗^4 π‘₯ +γ€–π‘π‘œπ‘ γ€—^4 π‘₯).γ€— 𝑑π‘₯ 2I = ∫_0^((πœ‹ )/2)▒𝑑π‘₯" " 2I = [π‘₯]_0^(πœ‹/2) 2I = [πœ‹/2βˆ’0] I = πœ‹/(2 Γ— 2) ∴ 𝐈 = 𝝅/πŸ’

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo