Β  Β  Example 27 - Evaluate tan-1 x / 1 + x2 dx - Chapter 7 - Examples - Examples

part 2 - Example 27 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Example 27 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 4 - Example 27 - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 5 - Example 27 - Examples - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Example 27 (Method 1) Evaluate ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 ) 𝑑π‘₯ Step 1 : Let F(π‘₯)=∫1β–’tan^(βˆ’1)⁑π‘₯/(1+γ€– π‘₯γ€—^2 ) 𝑑π‘₯ Put tan^(βˆ’1)⁑π‘₯=𝑑 Differentiating w.r.t.π‘₯ 𝑑/𝑑π‘₯ (tan^(βˆ’1)⁑π‘₯ )=𝑑𝑑/𝑑π‘₯ 1/(1 + π‘₯^2 )=𝑑𝑑/𝑑π‘₯ Therefore, ∫1β–’tan^(βˆ’1)⁑π‘₯/(1+γ€– π‘₯γ€—^2 ) 𝑑π‘₯=∫1▒〖𝑑/(1+π‘₯^2 ) Γ— (1+π‘₯^2 )𝑑𝑑〗 =∫1▒〖𝑑 𝑑𝑑〗 =𝑑^2/2 Putting 𝑑=γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1)⁑π‘₯ =(tan^(βˆ’1)⁑π‘₯ )^2/2 Hence 𝐹(π‘₯)=(tan^(βˆ’1)⁑π‘₯ )^2/2 Step 2 : ∫1β–’γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 )=𝐹(1)βˆ’F(0) =1/2 (tan^(βˆ’1)⁑1 )^2 βˆ’1/2 (tan^(βˆ’1)⁑0 )^2 =1/2 (πœ‹/4)^2βˆ’1/2 (0)^2 =1/2 πœ‹^2/16 = 𝝅^𝟐/πŸ‘πŸ Example 27 (Method 2) Evaluate ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 ) 𝑑π‘₯ Put 𝑑=tan^(βˆ’1)⁑π‘₯ Differentiating w.r.t.π‘₯ 𝑑𝑑/𝑑π‘₯=𝑑/𝑑π‘₯ (tan^(βˆ’1)⁑π‘₯ ) 𝑑𝑑/𝑑π‘₯=1/(1 + π‘₯^2 ) (1+π‘₯^2 )𝑑𝑑=𝑑π‘₯ Hence when value of x varies from 0 to 1, value of t varies from 0 to πœ‹/4 Therefore, ∫_0^1β–’tan^(βˆ’1)⁑π‘₯/(1 + π‘₯^2 )=∫_0^(πœ‹/4)▒𝑑/(1 + π‘₯^2 ) 𝑑π‘₯ (1+π‘₯^2 )𝑑𝑑 =∫_0^(πœ‹/4)β–’γ€– 𝑑 𝑑𝑑〗 =[𝑑^2/2]_0^(πœ‹/4) =1/2 [(πœ‹/4)^2βˆ’(0)^2 ] =1/2 Γ— πœ‹^2/16 = 𝝅^𝟐/πŸ‘πŸ

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo