Β  Example 25 (iv) - Evaluate Integral ∫ sin^3 2t cos 2t dt from 0 to πœ‹/ - Examples

part 2 - Example 25 (iv) - Examples - Serial order wise - Chapter 7 Class 12 Integrals
part 3 - Example 25 (iv) - Examples - Serial order wise - Chapter 7 Class 12 Integrals

Share on WhatsApp

Transcript

Example 25 Evaluate the following integrals: (iv) ∫_0^(πœ‹/4)β–’γ€–sin^3⁑2𝑑 cos⁑2 𝑑〗 𝑑𝑑 Let F(π‘₯)=∫1▒〖𝑠𝑖𝑛^3 2𝑑 π‘π‘œπ‘  2𝑑 𝑑𝑑〗 Let s𝑖𝑛 2𝑑=𝑒 Differentiating w.r.t.π‘₯ (𝑑(sin⁑2𝑑))/𝑑𝑑=𝑑𝑒/𝑑𝑑 2cπ‘œπ‘  2𝑑 =𝑑𝑒/𝑑𝑑 𝑑𝑑=𝑑𝑒/(2 π‘π‘œπ‘  2𝑑) Putting value of u and du in our integral ∫1▒〖𝑠𝑖𝑛^3 2𝑑 π‘π‘œπ‘  2𝑑 𝑑𝑑〗=∫1▒〖𝑒^3 π‘π‘œπ‘  2𝑑 Γ— 𝑑𝑒/(2 π‘π‘œπ‘  2𝑑)γ€— =1/2 ∫1▒〖𝑒^3 𝑑𝑒〗 =1/2 𝑒^(3+1)/(3+1)=1/2 𝑒^4/4= 𝑒^4/8 Putting back 𝑒=𝑠𝑖𝑛 2𝑑 =1/8 𝑠𝑖𝑛^4 2𝑑 Hence, F(𝑑)=1/8 𝑠𝑖𝑛^4 2𝑑 Now, ∫_0^(πœ‹/4)▒〖𝑠𝑖𝑛^3 2𝑑 π‘π‘œπ‘  2𝑑=𝐹(πœ‹/4)βˆ’πΉ(0) γ€— =1/8 𝑠𝑖𝑛^4 2(πœ‹/4)βˆ’1/8 𝑠𝑖𝑛^4 2(0) =1/8 𝑠𝑖𝑛^4 πœ‹/2βˆ’1/8 𝑠𝑖𝑛^4 (0) =1/8 Γ—1^4βˆ’1/8 Γ—0^4 =1/8 Γ—1βˆ’0 =𝟏/πŸ–

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo