Examples

Chapter 5 Class 12 Continuity and Differentiability
Serial order wise

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

### Transcript

Example 41 Differentiate γπ ππγ^2 π₯ π€.π.π‘. π^(cosβ‘π₯ ". " )Let π’ = γπ ππγ^2 π₯ & π£ =π^(cosβ‘π₯ ) We need to differentiate π’ π€.π.π‘. π£ . i.e., ππ’/ππ£ Here, ππ/ππ = (ππ/ππ)/(ππ/ππ) Calculating ππ/ππ π’ = γπ ππγ^2 π₯ Differentiating π€.π.π‘.π₯. ππ’/ππ₯ = π(γπ ππγ^2 π₯)/ππ₯ ππ’/ππ₯ = 2 sinβ‘π₯ . π(sinβ‘π₯ )/ππ₯ ππ’/ππ₯ = π πππβ‘π . ππ¨π¬β‘π Calculating ππ/ππ π£ =π^(cosβ‘π₯ ) Differentiating π€.π.π‘.π₯. ππ£/ππ₯ = π(π^(cosβ‘π₯ ) )/ππ₯ ππ£/ππ₯ = π^(cosβ‘π₯ ) . π(cosβ‘π₯ )/ππ₯ ππ£/ππ₯ = π^(cosβ‘π₯ ) . (βsinβ‘π₯ ) ππ£/ππ₯ = βπππβ‘π. π^(πππβ‘π ) Therefore ππ’/ππ£ = (ππ’/ππ₯)/(ππ£/ππ₯) = (2 sinβ‘π₯" ." cosβ‘π₯)/(βsinβ‘π₯ . π^(cosβ‘π₯ ) ) = (βπ"." πππβ‘π)/π^(πππβ‘π )