

Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19
Example 20 Important
Example 21
Example 22
Example 23 Important
Example 24
Example 25
Example 26 Important
Example 27
Example 28
Example 29 (i)
Example 29 (ii) Important
Example 29 (iii) Important
Example 29 (iv)
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35
Example 36 Important
Example 37 Important
Example 38
Example 39 Important
Example 40
Example 41 Important
Example 42 Important Deleted for CBSE Board 2023 Exams
Example 43 Deleted for CBSE Board 2023 Exams
Example 44 (i)
Example 44 (ii) Important
Example 44 (iii) Important
Example 45 (i)
Example 45 (ii) Important You are here
Example 45 (iii) Important
Example 46
Example 47 Important
Example 48
Last updated at Aug. 19, 2021 by Teachoo
Maths Crash Course - Live lectures + all videos + Real time Doubt solving!
Example 45 Differentiate the following w.r.t. x. (ii) tan β1 (sinβ‘π₯/( 1 +γ cosγβ‘γπ₯ γ )) Let π(π₯) = tan β1 (πππβ‘π/( 1 +γ πππγβ‘γπ γ )) π(π₯) = tan β1 ((π γπ¬π’π§ γβ‘γπ/πγ γ ππ¨π¬ γβ‘γπ/πγ)/( 1+ (π γππ¨π¬γ^πβ‘γ π/πγ β π))) = tan β1 ((2 γsin γβ‘γπ₯/2γ γ cos γβ‘γπ₯/2 γ)/( 2 cos^2β‘γ π₯/2γ )) = tan β1 ((2 γsin γβ‘γπ₯/2γ)/( 2 cosβ‘γπ₯/2γ )) We know that sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ Replacing ΞΈ by π/2 sin ΞΈ = 2 πππβ‘γπ½/πγ πππβ‘γπ½/πγ and cos 2ΞΈ = 2cos2 ΞΈ β 1 Replacing ΞΈ by π/2 cos ΞΈ = 2cos2 π½/π β 1 = tan β1 (γsin γβ‘γπ₯/2γ/( cosβ‘γ π₯/2γ )) = tan β1 (γtan γβ‘γπ₯/2γ ) = π/π π(π) = π/π Differentiating π€.π.π‘.π₯ πβ(π₯) = 1/2 (π(π₯))/ππ₯ πβ(π) = π/π (As tan^(β1)β‘γ(tanβ‘π)γ =π) Example 45 (Method 2) Differentiate the following w.r.t. x. (ii) tan β1 (sinβ‘π₯/( 1 +γ cosγβ‘γπ₯ γ )) Let π(π₯) = tan β1 (πππβ‘π/( 1 +γ πππγβ‘γπ γ )) Differentiating w.r.t x π^β² (π₯) = 1/(1 + (πππβ‘π/( 1 +γ πππγβ‘γπ γ ))^2 ) (πππβ‘π/( 1 +γ πππγβ‘γπ γ ))^β² = 1/(((1 + cosβ‘π₯ )^2 + sin^2β‘π₯)/(1 + cosβ‘π₯ )^2 ) (((πππβ‘π )^β² (π + πππ π)β(π + πππ π)^β² πππ π)/( (1 +γ πππγβ‘π )^π )) = (1 + cosβ‘π₯ )^2/((1 + cosβ‘π₯ )^2 + sin^2β‘π₯ ) ((πππ π(π + πππ π). β (β πππ π)πππ π)/( (1 +γ πππγβ‘π )^π )) = (πππ π₯ + πππ^π π + πππ^π π)/(1 + γππ¨π¬γ^πβ‘π + 2 cosβ‘π₯ + γπππγ^πβ‘π ) = (πππ π +π)/(1 + 1 + 2 cosβ‘π₯ ) = (πππ π + π)/(2 + 2 cosβ‘π₯ ) = (1 + πππ π)/(2(1 + cosβ‘π₯) ) = 1/2