Check sibling questions

Example 37 - Find dy/dx, if x2/3 + y2/3 = a2/3 - NCERT - Examples

Example 37 - Chapter 5 Class 12 Continuity and Differentiability - Part 2

Example 37 - Chapter 5 Class 12 Continuity and Differentiability - Part 3 Example 37 - Chapter 5 Class 12 Continuity and Differentiability - Part 4 Example 37 - Chapter 5 Class 12 Continuity and Differentiability - Part 5 Example 37 - Chapter 5 Class 12 Continuity and Differentiability - Part 6

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Example 37 (Method 1) Find 𝑑𝑦/𝑑π‘₯ , if π‘₯^(2/3) + 𝑦^(2/3) = π‘Ž^(2/3) . π‘₯^(2/3) + 𝑦^(2/3) = π‘Ž^(2/3) Differentiating w.r.t. x (𝑑(π‘₯^(2/3)))/𝑑π‘₯ + (𝑑(𝑦^(2/3)))/𝑑π‘₯ = (𝑑(π‘Ž^(2/3)))/𝑑π‘₯ 2/3 π‘₯^(2/3 βˆ’ 1) + (𝑑(𝑦^(2/3)))/𝑑π‘₯ Γ— 𝑑𝑦/𝑑𝑦 = 0 2/3 π‘₯^((βˆ’1)/3) + (𝑑(𝑦^(2/3)))/𝑑𝑦 Γ— 𝑑𝑦/𝑑π‘₯ = 0 2/3 π‘₯^((βˆ’1)/3) + 2/3 π’š^(𝟐/πŸ‘ βˆ’ 𝟏) Γ— 𝑑𝑦/𝑑π‘₯ = 0 2/3 1/π‘₯^(1/3) + 2/3 π’š^((βˆ’πŸ)/πŸ‘) Γ— 𝑑𝑦/𝑑π‘₯ = 0 2/3 1/π‘₯^(1/3) + 2/3 𝟏/π’š^(𝟏/πŸ‘) Γ— 𝑑𝑦/𝑑π‘₯ = 0 2/3 1/𝑦^(1/3) Γ— 𝑑𝑦/𝑑π‘₯ = βˆ’πŸ/πŸ‘ 1/π‘₯^(1/3) 1/𝑦^(1/3) Γ— 𝑑𝑦/𝑑π‘₯ = (βˆ’1)/π‘₯^(1/3) 𝑑𝑦/𝑑π‘₯ = βˆ’ 𝑦^(1/3)/π‘₯^(1/3) π’…π’š/𝒅𝒙 = βˆ’ (π’š/𝒙)^(𝟏/πŸ‘) Example 37 (Method 2) Find 𝑑𝑦/𝑑π‘₯ , if π‘₯^(2/3) + 𝑦^(2/3) = π‘Ž^(2/3) . Let 𝒙 = 𝐚 〖𝒄𝒐𝒔〗^πŸ‘β‘πœ½ & π’š = 𝐚 〖𝐬𝐒𝐧〗^πŸ‘β‘πœ½ Putting values in equation π‘₯^(2/3) + 𝑦^(2/3) = π‘Ž^(2/3) γ€–(𝒂 γ€–πœπ¨π¬γ€—^πŸ‘β‘πœ½)γ€—^(𝟐/πŸ‘) + γ€–(𝒂 〖𝐬𝐒𝒏〗^πŸ‘β‘πœ½)γ€—^(𝟐/πŸ‘) = 𝒂^(𝟐/πŸ‘) π‘Ž^(2/3) γ€–(cos^3β‘πœƒ)γ€—^(2/3) + π‘Ž^(2/3) γ€–(γ€–si𝑛〗^3β‘πœƒ)γ€—^(2/3) = π‘Ž^(2/3) π‘Ž^(2/3) . (sin^2β‘πœƒ+cos^2β‘πœƒ )= π‘Ž^(2/3) π‘Ž^(2/3) = π‘Ž^(2/3) So, our assumed values of x and y is correct Now, 𝑑𝑦/𝑑π‘₯ = (𝑑𝑦/π‘‘πœƒ)/(𝑑π‘₯/π‘‘πœƒ) Calculating π’…π’š/π’…πœ½ 𝑦 = a sin^3β‘πœƒ 𝑑𝑦/π‘‘πœƒ = 𝑑(a sin^3β‘πœƒ )/π‘‘πœƒ 𝑑𝑦/π‘‘πœƒ = a (3 sin^2β‘πœƒ) 𝒅(π’”π’Šπ’β‘πœ½ )/π’…πœ½ 𝑑𝑦/π‘‘πœƒ = 3π‘Ž sin2 𝜽 cos 𝜽 Calculating 𝒅𝒙/π’…πœ½ π‘₯ = a cos^3β‘πœƒ 𝑑π‘₯/π‘‘πœƒ = (𝑑 (γ€–a cosγ€—^3β‘γ€–πœƒ)γ€—)/π‘‘πœƒ 𝑑π‘₯/π‘‘πœƒ = a(3 cos^2β‘πœƒ) (𝒅(𝒄𝒐𝒔 𝜽) )/π’…πœ½ 𝒅𝒙/π’…πœ½ = πŸ‘πš 〖𝒄𝒐𝒔〗^𝟐⁑𝜽 . (βˆ’π’”π’Šπ’β‘πœ½ ) Therefore π’…π’š/𝒅𝒙 = 𝑑𝑦/π‘‘πœƒ Γ· 𝑑π‘₯/π‘‘πœƒ = (3a sin^2β‘πœƒ cosβ‘πœƒ)/(βˆ’3a cos^2β‘πœƒ sinβ‘πœƒ ) = (βˆ’sinβ‘πœƒ)/cosβ‘πœƒ = βˆ’tan 𝜽 Finding value of tan 𝜽 𝑦/π‘₯ = (π‘Ž sin^3β‘πœƒ)/(π‘Ž cos^3β‘πœƒ ) sin^3β‘πœƒ/cos^3β‘πœƒ = 𝑦/π‘₯ (sinβ‘πœƒ/cosβ‘πœƒ )^3 = 𝑦/π‘₯ sinβ‘πœƒ/cosβ‘πœƒ = (𝑦/π‘₯)^(1/3) π’•π’‚π’β‘πœ½ = √(πŸ‘&π’š/𝒙) Thus, 𝑑𝑦/𝑑π‘₯ = βˆ’tan πœƒ π’…π’š/𝒅𝒙 = βˆ’βˆš(πŸ‘&π’š/𝒙)

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.