Example 45 - Chapter 5 Class 12 Continuity and Differentiability - Part 7

Advertisement

Example 45 - Chapter 5 Class 12 Continuity and Differentiability - Part 8

Advertisement

Example 45 - Chapter 5 Class 12 Continuity and Differentiability - Part 9

  1. Chapter 5 Class 12 Continuity and Differentiability (Term 1)
  2. Serial order wise

Transcript

Example 45 Differentiate the following w.r.t. x. (iii) sin^(βˆ’1) ((2^( π‘₯+1) )/( 1 +γ€– 4 γ€—^π‘₯ )) Let 𝑓(π‘₯) = sin^(βˆ’1) ((2^( π‘₯+1) )/( 1 +γ€– 4 γ€—^π‘₯ )) 𝑓(π‘₯) = sin^(βˆ’1) ((2^( π‘₯). 2)/( 1 + (2^π‘₯ )^2 )) Let 𝟐^𝒙 = tan ΞΈ 𝑓(π‘₯) = sin^(βˆ’1) ((tanβ‘γ€–πœƒ γ€—. 2)/( 1 + tan^2β‘πœƒ )) = sin^(βˆ’1) ((2 tanβ‘γ€–πœƒ γ€— )/( 1 +γ€– tan^2γ€—β‘πœƒ )) = sin^(βˆ’1) (sin 2πœƒ) = 2πœƒ (sin⁑2πœƒ "= " (2 tanβ‘πœƒ)/(1 +γ€– tan^2γ€—β‘πœƒ )) (As 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖(π‘ π‘–π‘›β‘πœƒ)γ€— =πœƒ) Since 2^π‘₯= tanβ‘πœƒ tan^(βˆ’1) (2^π‘₯ )=πœƒ ∴ 𝒇(𝒙) = 𝟐 (〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝟐^𝒙 )) Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = 2 (𝑑 (tan^(βˆ’1) 2^π‘₯ )" " )/𝑑π‘₯ 𝑓’(π‘₯) = 2 . 1/(1 + (2^π‘₯ )^2 ) . (𝒅 (𝟐^𝒙 )" " )/𝒅𝒙 𝑓’(π‘₯) = (2 )/(1 + (2^π‘₯ )^2 ) . 𝟐^𝒙 . π’π’π’ˆβ‘πŸ (𝐴𝑠 𝑑/𝑑π‘₯(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1))=1/(1+π‘₯^2 )) (𝐴𝑠 𝑑/𝑑π‘₯ (π‘Ž^π‘₯ )=π‘Ž^π‘₯. π‘™π‘œπ‘”β‘π‘₯ ) 𝑓’(π‘₯) = (γ€–2. 2γ€—^π‘₯.γ€– log〗⁑2)/(1 + (2^π‘₯ )^2 ) 𝑓’(π‘₯) = (2^(π‘₯ + 1).γ€– log〗⁑2)/(1 + (2^π‘₯ )^2 ) 𝑓’(π‘₯) = (2^(π‘₯ + 1).γ€– log〗⁑2)/(1 + (2^2 )^π‘₯ ) 𝒇’(𝒙) = (𝟐^(𝒙 + 𝟏).γ€– π’π’π’ˆγ€—β‘πŸ)/(𝟏 + πŸ’^𝒙 )

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.