Slide19.JPG

Slide20.JPG

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

  Slide21.JPG

Slide22.JPG
Slide23.JPG

Something went wrong!

The video couldn't load due to a technical hiccup.
But don't worry — our team is already on it, and we're working hard to get it back up ASAP.

Thanks for bearing with us!

Share on WhatsApp

Transcript

Example 38 (Method 1) If y = 怖š‘ š‘–š‘›ć€—^(āˆ’1) š‘„, show that (1 ā€“ š‘„2) š‘‘2š‘¦/š‘‘š‘„2 āˆ’ š‘„ š‘‘š‘¦/š‘‘š‘„ = 0 . We have š‘¦ = 怖š‘ š‘–š‘›ć€—^(āˆ’1) š‘„ Differentiating š‘¤.š‘Ÿ.š‘”.š‘„ š‘‘š‘¦/š‘‘š‘„ = š‘‘(怖š‘ š‘–š‘›ć€—^(āˆ’1) š‘„)/š‘‘š‘„ š‘‘š‘¦/š‘‘š‘„ = 1/āˆš(怖1 āˆ’ š‘„怗^2 ) āˆš((šŸāˆ’š’™^šŸ ) ) š’š^ā€² = šŸ Squaring both sides ("As " š‘‘(怖š‘ š‘–š‘›ć€—^(āˆ’1) š‘„)/š‘‘š‘„ " = " 1/āˆš(怖1 āˆ’ š‘„怗^2 )) (āˆš((1āˆ’š‘„^2 ) ) š‘¦^ā€² )^2 = 1^2 (1āˆ’š‘„^2 )(š‘¦^ā€² )^2 = 1 Again Differentiating š‘¤.š‘Ÿ.š‘”.š‘„ š‘‘/š‘‘š‘„ ((1āˆ’š‘„^2 )(š‘¦^ā€² )^2 ) = (š‘‘(1))/š‘‘š‘„ d(1 āˆ’ x^2 )/š‘‘š‘„ (š‘¦^ā€² )^2+(1āˆ’š‘„^2 ) š‘‘((š‘¦^ā€² )^2 )/š‘‘š‘„ = 0 āˆ’2š‘„(š‘¦^ā€² )^2+(1āˆ’š‘„^2 ) 2š‘¦^ā€² Ɨ š‘¦^ā€²ā€² = 0 怖2y怗^ā€² [āˆ’š’™š’š^ā€²+(šŸāˆ’š’™^šŸ ) š’š^ā€²ā€² ] = 0 āˆ’š‘„š‘¦^ā€²+(1āˆ’š‘„^2 ) š‘¦^ā€²ā€²=0 (怖šŸāˆ’š’™ć€—^šŸ ) (š’…^šŸ š’š)/怖š’…š’™ć€—^šŸ āˆ’ š’™ . š’…š’š/š’…š’™ = 0 Example 38 (Method 2) If y = 怖š‘ š‘–š‘›ć€—^(āˆ’1) š‘„, show that (1 ā€“ š‘„2) š‘‘2š‘¦/š‘‘š‘„2 āˆ’ š‘„ š‘‘š‘¦/š‘‘š‘„ = 0 . We have š‘¦ = 怖š‘ š‘–š‘›ć€—^(āˆ’1) š‘„ Differentiating š‘¤.š‘Ÿ.š‘”.š‘„ š‘‘š‘¦/š‘‘š‘„ = š‘‘(怖š‘ š‘–š‘›ć€—^(āˆ’1) š‘„)/š‘‘š‘„ š‘‘š‘¦/š‘‘š‘„ = 1/āˆš(怖1 āˆ’ š‘„怗^2 ) š’…š’š/š’…š’™ = (怖šŸāˆ’š’™ć€—^šŸ )^((āˆ’šŸ)/( šŸ)) ("As " š‘‘(怖š‘ š‘–š‘›ć€—^(āˆ’1) š‘„)/š‘‘š‘„ " = " 1/āˆš(怖1 āˆ’ š‘„怗^2 )) Again Differentiating š‘¤.š‘Ÿ.š‘”.š‘„ š‘‘/š‘‘š‘„ (š‘‘š‘¦/š‘‘š‘„) = (š‘‘(怖1 āˆ’ š‘„怗^2 )^((āˆ’1)/( 2)))/š‘‘š‘„ (š‘‘^2 š‘¦)/怖š‘‘š‘„怗^2 = (āˆ’1)/( 2) (怖1āˆ’š‘„怗^2 )^((āˆ’1)/( 2) āˆ’1) . š‘‘(怖1 āˆ’ š‘„怗^2 )/š‘‘š‘„ (š‘‘^2 š‘¦)/怖š‘‘š‘„怗^2 = (āˆ’1)/( 2) (怖1āˆ’š‘„怗^2 )^((āˆ’3)/2 ). (0āˆ’2š‘„) (š‘‘^2 š‘¦)/怖š‘‘š‘„怗^2 = (āˆ’1)/( 2) (怖1āˆ’š‘„怗^2 )^((āˆ’3)/2 ). (āˆ’2š‘„) (š’…^šŸ š’š)/怖š’…š’™ć€—^šŸ = š’™(怖šŸāˆ’š’™ć€—^šŸ )^((āˆ’šŸ‘)/šŸ ) Now, We need to prove (怖1āˆ’š‘„怗^2 ) (š‘‘^2 š‘¦)/怖š‘‘š‘„怗^2 āˆ’ š‘„ . š‘‘š‘¦/š‘‘š‘„ = 0 Solving LHS (怖1āˆ’š‘„怗^2 ) (š‘‘^2 š‘¦)/怖š‘‘š‘„怗^2 āˆ’ š‘„ . š‘‘š‘¦/š‘‘š‘„ = (怖1āˆ’š‘„怗^2 ) . (š‘„怖 (怖1āˆ’š‘„怗^2 )怗^((āˆ’3)/2 ) ) āˆ’ š‘„ (怖1āˆ’š‘„怗^2 )^((āˆ’1)/( 2)) = š‘„怖 (怖1āˆ’š‘„怗^2 )怗^(šŸ + ((āˆ’šŸ‘)/šŸ) )āˆ’š‘„ (怖1āˆ’š‘„怗^2 )^((āˆ’1)/( 2)) = š‘„怖 (怖1āˆ’š‘„怗^2 )怗^((āˆ’1)/( 2))āˆ’š‘„ (怖1āˆ’š‘„怗^2 )^((āˆ’1)/( 2)) = 0 = RHS Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo