Check sibling questions

Example 41 - If y = sin-1 x, show that (1 - x2) d2y/dx2 - x dy/dx = 0

Example 41 - Chapter 5 Class 12 Continuity and Differentiability - Part 2

This video is only available for Teachoo black users

Example 41 - Chapter 5 Class 12 Continuity and Differentiability - Part 3 Example 41 - Chapter 5 Class 12 Continuity and Differentiability - Part 4 Example 41 - Chapter 5 Class 12 Continuity and Differentiability - Part 5

This video is only available for Teachoo black users

Get live Maths 1-on-1 Classs - Class 6 to 12


Transcript

Example 41 (Method 1) If y = 〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯, show that (1 – π‘₯2) 𝑑2𝑦/𝑑π‘₯2 βˆ’ π‘₯ 𝑑𝑦/𝑑π‘₯ = 0 . We have 𝑦 = 〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑦/𝑑π‘₯ = 𝑑(〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯)/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 1/√(γ€–1 βˆ’ π‘₯γ€—^2 ) √((πŸβˆ’π’™^𝟐 ) ) π’š^β€² = 𝟏 Squaring both sides ("As " 𝑑(〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯)/𝑑π‘₯ " = " 1/√(γ€–1 βˆ’ π‘₯γ€—^2 )) (√((1βˆ’π‘₯^2 ) ) 𝑦^β€² )^2 = 1^2 (1βˆ’π‘₯^2 )(𝑦^β€² )^2 = 1 Again Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑/𝑑π‘₯ ((1βˆ’π‘₯^2 )(𝑦^β€² )^2 ) = (𝑑(1))/𝑑π‘₯ d(1 βˆ’ x^2 )/𝑑π‘₯ (𝑦^β€² )^2+(1βˆ’π‘₯^2 ) 𝑑((𝑦^β€² )^2 )/𝑑π‘₯ = 0 βˆ’2π‘₯(𝑦^β€² )^2+(1βˆ’π‘₯^2 ) 2𝑦^β€² Γ— 𝑦^β€²β€² = 0 γ€–2yγ€—^β€² [βˆ’π’™π’š^β€²+(πŸβˆ’π’™^𝟐 ) π’š^β€²β€² ] = 0 βˆ’π‘₯𝑦^β€²+(1βˆ’π‘₯^2 ) 𝑦^β€²β€²=0 (γ€–πŸβˆ’π’™γ€—^𝟐 ) (𝒅^𝟐 π’š)/〖𝒅𝒙〗^𝟐 βˆ’ 𝒙 . π’…π’š/𝒅𝒙 = 0 (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (βˆ’1)/( 2) (γ€–1βˆ’π‘₯γ€—^2 )^((βˆ’3)/2 ). (0βˆ’2π‘₯) (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (βˆ’1)/( 2) (γ€–1βˆ’π‘₯γ€—^2 )^((βˆ’3)/2 ). (βˆ’2π‘₯) (𝒅^𝟐 π’š)/〖𝒅𝒙〗^𝟐 = 𝒙(γ€–πŸβˆ’π’™γ€—^𝟐 )^((βˆ’πŸ‘)/𝟐 ) Example 41 (Method 2) If y = 〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯, show that (1 – π‘₯2) 𝑑2𝑦/𝑑π‘₯2 βˆ’ π‘₯ 𝑑𝑦/𝑑π‘₯ = 0 . We have 𝑦 = 〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑦/𝑑π‘₯ = 𝑑(〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯)/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = 1/√(γ€–1 βˆ’ π‘₯γ€—^2 ) π’…π’š/𝒅𝒙 = (γ€–πŸβˆ’π’™γ€—^𝟐 )^((βˆ’πŸ)/( 𝟐)) ("As " 𝑑(〖𝑠𝑖𝑛〗^(βˆ’1) π‘₯)/𝑑π‘₯ " = " 1/√(γ€–1 βˆ’ π‘₯γ€—^2 )) Again Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑/𝑑π‘₯ (𝑑𝑦/𝑑π‘₯) = (𝑑(γ€–1 βˆ’ π‘₯γ€—^2 )^((βˆ’1)/( 2)))/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (βˆ’1)/( 2) (γ€–1βˆ’π‘₯γ€—^2 )^((βˆ’1)/( 2) βˆ’1) . 𝑑(γ€–1 βˆ’ π‘₯γ€—^2 )/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (βˆ’1)/( 2) (γ€–1βˆ’π‘₯γ€—^2 )^((βˆ’3)/2 ). (0βˆ’2π‘₯) (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (βˆ’1)/( 2) (γ€–1βˆ’π‘₯γ€—^2 )^((βˆ’3)/2 ). (βˆ’2π‘₯) (𝒅^𝟐 π’š)/〖𝒅𝒙〗^𝟐 = 𝒙(γ€–πŸβˆ’π’™γ€—^𝟐 )^((βˆ’πŸ‘)/𝟐 ) Now, We need to prove (γ€–1βˆ’π‘₯γ€—^2 ) (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 βˆ’ π‘₯ . 𝑑𝑦/𝑑π‘₯ = 0 Solving LHS (γ€–1βˆ’π‘₯γ€—^2 ) (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 βˆ’ π‘₯ . 𝑑𝑦/𝑑π‘₯ = (γ€–1βˆ’π‘₯γ€—^2 ) . (π‘₯γ€– (γ€–1βˆ’π‘₯γ€—^2 )γ€—^((βˆ’3)/2 ) ) βˆ’ π‘₯ (γ€–1βˆ’π‘₯γ€—^2 )^((βˆ’1)/( 2)) = π‘₯γ€– (γ€–1βˆ’π‘₯γ€—^2 )γ€—^(𝟏 + ((βˆ’πŸ‘)/𝟐) )βˆ’π‘₯ (γ€–1βˆ’π‘₯γ€—^2 )^((βˆ’1)/( 2)) = π‘₯γ€– (γ€–1βˆ’π‘₯γ€—^2 )γ€—^((βˆ’1)/( 2))βˆ’π‘₯ (γ€–1βˆ’π‘₯γ€—^2 )^((βˆ’1)/( 2)) = 0 = RHS Hence proved

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.