
Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at May 29, 2023 by Teachoo
Ex 5.5, 1 Differentiate the functions in, cos𝑥 . cos2𝑥 . cos3𝑥 Let y = cos𝑥 . cos2𝑥 . cos3𝑥 Taking log both sides log𝑦 = log (cos𝑥.cos2𝑥.cos3𝑥 ) 𝒍𝒐𝒈𝒚 = 𝒍𝒐𝒈 (𝒄𝒐𝒔𝒙) + 𝒍𝒐𝒈 (𝒄𝒐𝒔 𝟐𝒙) + 𝒍𝒐𝒈 (𝒄𝒐𝒔𝟑𝒙) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑦 )/𝑑𝑥 = 𝑑(log (cos𝑥)" + " log (cos2𝑥) "+ " log (cos3𝑥))/𝑑𝑥 𝑑(log𝑦 )/𝑑𝑥 (𝑑𝑦/𝑑𝑦) = (𝑑(log (cos𝑥)) )/𝑑𝑥 + (𝑑(log (cos2𝑥)) )/𝑑𝑥 + (𝑑(log (cos3𝑥)) )/𝑑𝑥 𝒅(𝒍𝒐𝒈𝒚 )/𝒅𝒚 (𝒅𝒚/𝒅𝒙) = 𝟏/𝐜𝐨𝐬𝒙 . (𝒅 (𝐜𝐨𝐬𝒙 ))/𝒅𝒙 + 𝟏/𝐜𝐨𝐬𝟐𝒙 . (𝒅(𝐜𝐨𝐬𝟐𝒙))/𝒅𝒙 + 𝟏/𝐜𝐨𝐬𝟑𝒙 . 𝒅(𝐜𝐨𝐬𝟑𝒙 )/𝒅𝒙 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/cos𝑥 .(− sin𝑥) + 1/cos2𝑥 .(− sin2𝑥).𝑑(2𝑥)/𝑑𝑥 + 1/cos𝑥 .(− sin3𝑥).𝑑(3𝑥)/𝑑𝑥 𝟏/𝒚 . 𝒅𝒚/𝒅𝒙 = (−𝐬𝐢𝐧𝒙)/𝐜𝐨𝐬𝒙 − 𝐬𝐢𝐧𝟐𝒙/𝐜𝐨𝐬𝒙 . 𝟐 − 𝐬𝐢𝐧𝟑𝒙/𝐜𝐨𝐬𝟑𝒙 . 𝟑 1/𝑦 . 𝑑𝑦/𝑑𝑥 = −tan𝑥−tan2𝑥. 2 −tan3𝑥. 3 𝟏/𝒚 . 𝒅𝒚/𝒅𝒙 = − (𝒕𝒂𝒏𝒙+𝟐 𝒕𝒂𝒏𝟐𝒙+𝟑 𝒕𝒂𝒏𝟑𝒙 ) 𝑑𝑦/𝑑𝑥 = −𝑦 (tan𝑥+2 tan2𝑥+3 tan3𝑥 ) 𝒅𝒚/𝒅𝒙 = − 𝒄𝒐𝒔𝒙 . 𝒄𝒐𝒔𝟐𝒙 . 𝒄𝒐𝒔𝟑𝒙 (𝒕𝒂𝒏𝒙+𝟐 𝒕𝒂𝒏𝟐𝒙+𝟑 𝒕𝒂𝒏𝟑𝒙 )