

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.5
Ex 5.5, 2 You are here
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at May 29, 2023 by Teachoo
Ex 5.5, 2 Differentiate the functions in, √(((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) Let 𝑦=√(((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) 𝑦= (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5)))^(1/2) Taking log both sides log𝑦 = log (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5)))^(1/2) log𝑦 = 1/2 log (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) (As 𝑙𝑜𝑔(𝑎^𝑏) = 𝑏 𝑙𝑜𝑔𝑎) log𝑦 = 1/2 [log〖((𝑥−1)(𝑥−2))−log((𝑥−3)(𝑥−4)(𝑥−5)) 〗 ] log𝑦 = 1/2 . [("log " (𝑥+1)" + log " (𝑥−2))" − " (log(𝑥−3)+log〖(𝑥−4)+log(𝑥−5) 〗 )] log𝑦 = 1/2 . ["log " (𝑥+1)" + log " (𝑥+2)" − " log(𝑥−3)−log〖(𝑥−4)−log(𝑥−5) 〗 ] Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑦)/𝑑𝑥 = (𝑑 (1/2 " ." log〖(𝑥 + 1)" +" log〖 (𝑥 + 2)" − " log(𝑥 − 3)−log〖(𝑥 − 4)−log(𝑥 − 5) 〗 〗 〗 ))/𝑑𝑥 𝑑(log𝑦)/𝑑𝑥 (𝑑𝑦/𝑑𝑦) = 1/2 (𝑑(〖log 〗〖(𝑥 + 1)" +" log〖(𝑥 + 2)" −" log(𝑥 − 3) − log〖(𝑥 − 4) − log(𝑥 − 5) 〗 〗 〗 )/𝑑𝑥) 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/2 (1/(𝑥 + 1)+1/(𝑥 + 2)−1/(𝑥 − 3)−1/(𝑥 − 4)−1/(𝑥 − 5)) 𝑑𝑦/𝑑𝑥 = 1/2 𝑦(1/(𝑥 − 1)+1/(𝑥 − 2)−1/(𝑥 − 3)−1/(𝑥 − 4)−1/(𝑥 − 5)) 𝒅𝒚/𝒅𝒙 = 𝟏/𝟐 √(((𝒙 − 𝟏)(𝒙 − 𝟐))/((𝒙 − 𝟑)(𝒙 − 𝟒)(𝒙 − 𝟓))) (𝟏/(𝒙 − 𝟏)+𝟏/(𝒙 − 𝟐)−𝟏/(𝒙 − 𝟑)−𝟏/(𝒙 − 𝟒)−𝟏/(𝒙 − 𝟓))