

Get live Maths 1-on-1 Classs - Class 6 to 12
Ex 5.5
Ex 5.5, 2 You are here
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at March 16, 2023 by Teachoo
Ex 5.5, 2 Differentiate the functions in, √(((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) Let 𝑦=√(((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) 𝑦= (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5)))^(1/2) Taking log both sides log𝑦 = log (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5)))^(1/2) log𝑦 = 1/2 log (((𝑥 − 1)(𝑥 − 2))/((𝑥 − 3)(𝑥 − 4)(𝑥 − 5))) (As 𝑙𝑜𝑔(𝑎^𝑏) = 𝑏 𝑙𝑜𝑔𝑎) log𝑦 = 1/2 [log〖((𝑥−1)(𝑥−2))−log((𝑥−3)(𝑥−4)(𝑥−5)) 〗 ] log𝑦 = 1/2 . [("log " (𝑥+1)" + log " (𝑥−2))" − " (log(𝑥−3)+log〖(𝑥−4)+log(𝑥−5) 〗 )] log𝑦 = 1/2 . ["log " (𝑥+1)" + log " (𝑥+2)" − " log(𝑥−3)−log〖(𝑥−4)−log(𝑥−5) 〗 ] Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑦)/𝑑𝑥 = (𝑑 (1/2 " ." log〖(𝑥 + 1)" +" log〖 (𝑥 + 2)" − " log(𝑥 − 3)−log〖(𝑥 − 4)−log(𝑥 − 5) 〗 〗 〗 ))/𝑑𝑥 𝑑(log𝑦)/𝑑𝑥 (𝑑𝑦/𝑑𝑦) = 1/2 (𝑑(〖log 〗〖(𝑥 + 1)" +" log〖(𝑥 + 2)" −" log(𝑥 − 3) − log〖(𝑥 − 4) − log(𝑥 − 5) 〗 〗 〗 )/𝑑𝑥) 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/2 (1/(𝑥 + 1)+1/(𝑥 + 2)−1/(𝑥 − 3)−1/(𝑥 − 4)−1/(𝑥 − 5)) 𝑑𝑦/𝑑𝑥 = 1/2 𝑦(1/(𝑥 − 1)+1/(𝑥 − 2)−1/(𝑥 − 3)−1/(𝑥 − 4)−1/(𝑥 − 5)) 𝒅𝒚/𝒅𝒙 = 𝟏/𝟐 √(((𝒙 − 𝟏)(𝒙 − 𝟐))/((𝒙 − 𝟑)(𝒙 − 𝟒)(𝒙 − 𝟓))) (𝟏/(𝒙 − 𝟏)+𝟏/(𝒙 − 𝟐)−𝟏/(𝒙 − 𝟑)−𝟏/(𝒙 − 𝟒)−𝟏/(𝒙 − 𝟓))