




Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important You are here
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at May 29, 2023 by Teachoo
Ex 5.5, 9 Differentiate the functions in, π₯^sinβ‘π₯ + γ(sinβ‘π₯)γ^cosβ‘π₯ Let y = π₯^sinβ‘π₯ + γ(sinβ‘π₯)γ^cosβ‘γπ₯ γ Let π’ =π₯^sinβ‘π₯ & π£ =γ(sinβ‘π₯)γ^cosβ‘π₯ β΄ π¦ = π’ + π£ Differentiating both sides π€.π.π‘.π₯. ππ¦/ππ₯ = (π (π’ + π£))/ππ₯ ππ¦/ππ₯ = ππ’/ππ₯ + ππ£/ππ₯ Calculating π π/π π π’ =π₯^sinβ‘π₯ Taking log both sides logβ‘π’=logβ‘γπ₯^sinβ‘π₯ γ logβ‘π’= sinβ‘π₯. logβ‘γ π₯γ Differentiating both sides π€.π.π‘.π₯. (π(logβ‘π’))/ππ₯ = π(sinβ‘π₯. logβ‘γ π₯γ )/ππ₯ (π(logβ‘π’))/ππ₯ . ππ’/ππ’ = π(sinβ‘π₯. logβ‘γ π₯γ )/ππ₯ 1/π’ . ππ’/ππ₯ = π(sinβ‘π₯ . logβ‘γ π₯γ )/ππ₯ (As πππβ‘(π^π) = π . πππβ‘π) Using product Rule As (π’π£)β = π’βπ£ + π£βπ’ 1/π’ . ππ’/ππ₯ = π(sinβ‘π₯ )/ππ₯ . logβ‘π₯ + π(logβ‘π₯ )/ππ₯ . sin π₯ 1/π’ . ππ’/ππ₯ = cosβ‘π₯ . logβ‘π₯ + 1/π₯ . sin π₯ 1/π’ . ππ’/ππ₯ = cosβ‘π₯ . logβ‘π₯ + (sin π₯" " )/π₯ ππ’/ππ₯ = u(cosβ‘γπ₯ .logβ‘γπ₯+ sinβ‘π₯/π₯γ γ ) ππ’/ππ₯ = π₯^sinβ‘π₯ (cosβ‘γπ₯ .logβ‘γπ₯+ sinβ‘π₯/π₯γ γ ). ππ’/ππ₯ = π₯^sinβ‘π₯ (γsinβ‘π₯/π₯ +cosγβ‘γπ₯ .logβ‘π₯ γ ) Calculating π π/π π π£= (sinβ‘π₯ )^cosβ‘π₯ Taking log both sides logβ‘π£ = logβ‘γ γ. sinγβ‘π₯γ^(cos π₯) logβ‘π£=cosβ‘π₯. log sinβ‘π₯ Differentiating both sides π€.π.π‘.π₯. (π(logβ‘π£))/ππ₯ = π(cosβ‘π₯. log sinβ‘π₯ )/ππ₯ (π(logβ‘π£))/ππ₯ . ππ£/ππ£ = π(cosβ‘π₯. log sinβ‘π₯ )/ππ₯ (π(logβ‘π£))/ππ£ . ππ£/ππ₯ = π(cosβ‘π₯. log sinβ‘π₯ )/ππ₯ (As πππβ‘(π^π) = π . πππβ‘π) 1/π£ . ππ£/ππ₯ = π(cosβ‘π₯. log sinβ‘π₯ )/ππ₯ 1/π£ . ππ£/ππ₯ = π(cosβ‘π₯ )/ππ₯ . logβ‘sinβ‘π₯ + π(logβ‘sinβ‘π₯ )/ππ₯ . cosβ‘π₯ 1/π£ . ππ£/ππ₯ = βsinβ‘π₯ . logβ‘sinβ‘π₯ + (1/sinβ‘π₯ . π(sinβ‘π₯ )/ππ₯) . cosβ‘π₯ 1/π£ . ππ£/ππ₯ = βsinβ‘π₯ . logβ‘sinβ‘π₯ + (1/sinβ‘π₯ .cosβ‘π₯ ) . cosβ‘π₯ 1/π£ . ππ£/ππ₯ = βsinβ‘π₯ . logβ‘sinβ‘π₯ + (cotβ‘π₯ ) . cosβ‘π₯ ππ£/ππ₯ = π£(βsinβ‘π₯ " " . logβ‘sinβ‘π₯" +" cotβ‘π₯ ". " cosβ‘π₯) ππ£/ππ₯ = (sinβ‘π₯ )^cosβ‘π₯ (coπ β‘π₯ ". " coπ‘β‘π₯βsinβ‘π₯ " " . logβ‘sinβ‘π₯) using product Rule As (π’π£)β = π’βπ£ + π£βπ’ Now ππ¦/ππ₯ = ππ’/ππ₯ + ππ£/ππ₯ Putting value of ππ’/ππ₯ & ππ£/ππ₯ π π/π π = π^π¬π’π§β‘π (π¬π’π§β‘π/π+ππ¨π¬β‘γπ .π₯π¨π β‘π γ ) + (π¬π’π§β‘π )^ππ¨π¬β‘π (ππ¨π¬β‘π .ππ¨πβ‘πβπ¬π’π§β‘π π₯π¨π β‘π¬π’π§β‘π )