




Last updated at Sept. 17, 2019 by Teachoo
Transcript
Ex 5.5, 9 (Method 1) Differentiate the functions in, 𝑥 sin𝑥+ ( sin𝑥) cos𝑥 Let y = 𝑥 sin𝑥+ ( sin𝑥) cos𝑥 Let 𝑢 = 𝑥 sin𝑥 & 𝑣 = ( sin𝑥) cos𝑥 ∴ 𝑦 = 𝑢 + 𝑣 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑𝑦𝑑𝑥 = 𝑑 (𝑢 + 𝑣)𝑑𝑥 𝑑𝑦𝑑𝑥 = 𝑑𝑢𝑑𝑥 + 𝑑𝑣𝑑𝑥 Calculating 𝒅𝒖𝒅𝒙 𝑢 = 𝑥 sin𝑥 Taking log both sides log𝑢= log 𝑥 sin𝑥 log𝑢= sin𝑥. log 𝑥 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑( log𝑢)𝑑𝑥 = 𝑑 sin𝑥. log 𝑥𝑑𝑥 𝑑( log𝑢)𝑑𝑥 . 𝑑𝑢𝑑𝑢 = 𝑑 sin𝑥. log 𝑥𝑑𝑥 1𝑢 . 𝑑𝑢𝑑𝑥 = 𝑑 sin𝑥 . log 𝑥𝑑𝑥 1𝑢 . 𝑑𝑢𝑑𝑥 = 𝑑 sin𝑥𝑑𝑥 . log𝑥 + 𝑑 log𝑥𝑑𝑥 . sin 𝑥 1𝑢 . 𝑑𝑢𝑑𝑥 = cos𝑥 . log𝑥 + 1𝑥 . sin 𝑥 1𝑢 . 𝑑𝑢𝑑𝑥 = cos𝑥 . log𝑥 + sin 𝑥 𝑥 𝑑𝑢𝑑𝑥 = u cos𝑥 . log𝑥+ sin𝑥𝑥 𝑑𝑢𝑑𝑥 = 𝑥 sin𝑥 cos𝑥 . log𝑥+ sin𝑥𝑥. 𝑑𝑢𝑑𝑥 = 𝑥 sin𝑥 sin𝑥𝑥 +cos𝑥 . log𝑥 Calculating 𝒅𝒗𝒅𝒙 𝑣= sin𝑥 cos𝑥 Taking log both sides log𝑣 = log . sin𝑥cos 𝑥 log𝑣= cos𝑥. log sin𝑥 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑( log𝑣)𝑑𝑥 = 𝑑 cos𝑥. log sin𝑥𝑑𝑥 𝑑( log𝑣)𝑑𝑥 . 𝑑𝑣𝑑𝑣 = 𝑑 cos𝑥. log sin𝑥𝑑𝑥 𝑑( log𝑣)𝑑𝑣 . 𝑑𝑣𝑑𝑥 = 𝑑 cos𝑥. log sin𝑥𝑑𝑥 1𝑣 . 𝑑𝑣𝑑𝑥 = 𝑑 cos𝑥. log sin𝑥𝑑𝑥 1𝑣 . 𝑑𝑣𝑑𝑥 = 𝑑 cos𝑥𝑑𝑥 . logsin𝑥 + 𝑑 log sin𝑥𝑑𝑥 . cos𝑥 1𝑣 . 𝑑𝑣𝑑𝑥 = − sin𝑥 . logsin𝑥 + 1 sin𝑥 . 𝑑 sin𝑥𝑑𝑥 . cos𝑥 1𝑣 . 𝑑𝑣𝑑𝑥 = − sin𝑥 . logsin𝑥 + 1 sin𝑥 . cos𝑥 . cos𝑥 1𝑣 . 𝑑𝑣𝑑𝑥 = − sin𝑥 . logsin𝑥 + cot𝑥 . cos𝑥 𝑑𝑣𝑑𝑥 = 𝑣 − sin𝑥 . logsin𝑥 + cot𝑥. cos𝑥 𝑑𝑣𝑑𝑥 = sin𝑥 cos𝑥 co𝑠𝑥. co𝑡𝑥− sin𝑥 . logsin𝑥 Now 𝑑𝑦𝑑𝑥 = 𝑑𝑢𝑑𝑥 + 𝑑𝑣𝑑𝑥 Putting value of 𝑑𝑢𝑑𝑥 & 𝑑𝑣𝑑𝑥 𝒅𝒚𝒅𝒙 = 𝒙 𝐬𝐢𝐧𝒙 𝐬𝐢𝐧𝒙𝒙+ 𝐜𝐨𝐬𝒙 . 𝐥𝐨𝐠𝒙 + 𝐬𝐢𝐧𝒙 𝐜𝐨𝐬𝒙 𝒄𝒐𝒔𝒙. 𝒄𝒐𝒕𝒙− 𝒔𝒊𝒏𝒙 . 𝒍𝒐𝒈𝒔𝒊𝒏
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important You are here
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
About the Author