Ex 5.5, 5 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at April 16, 2024 by Teachoo
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5 You are here
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at April 16, 2024 by Teachoo
Ex 5.5, 5 Differentiate the functions in, (𝑥 + 3)^2 . (𝑥 + 4)^3 . (𝑥 + 5)^4 Let 𝑦= (𝑥 + 3)^2 . (𝑥 + 4)^3 . (𝑥 + 5)^4 Taking log both sides log𝑦 = log ((𝑥 + 3)^2 . (𝑥 + 4)^3 . (𝑥 + 5)^4 ) log𝑦 = log (𝑥 + 3)^2 + log (𝑥 + 4)^3 + log (𝑥 + 5)^4 log𝑦 = 2 log (𝑥 + 3) + 3 log (𝑥 + 4) + 4 log (𝑥 + 5) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑦 )/𝑑𝑥 = (𝑑 (2 log (𝑥 + 3)" + " 3 log (𝑥 + 4)" + " 4 log (𝑥 + 5)))/𝑑𝑥 𝑑(log𝑦 )/𝑑𝑥 (𝑑𝑦/𝑑𝑦) = 𝑑(2 log (𝑥 + 3))/𝑑𝑥 + (𝑑 (3 log (𝑥 + 4)))/𝑑𝑥 + 𝑑(4 log (𝑥 + 5))/𝑑𝑥 𝑑(log𝑦 )/𝑑𝑦 (𝑑𝑦/𝑑𝑥) = 2 𝑑(log (𝑥 + 3))/𝑑𝑥 + 3 (𝑑 (log (𝑥 + 4)))/𝑑𝑥 + 4 𝑑(log (𝑥 + 5))/𝑑𝑥 1/𝑦 × 𝑑𝑦/𝑑𝑥 = 2. 1/((𝑥 + 3) ) . 𝑑(𝑥 + 3)/𝑑𝑥 + 3. 1/((𝑥 + 4) ) . 𝑑(𝑥 + 4)/𝑑𝑥 + 4. 1/((𝑥 + 5) ) . 𝑑(𝑥 + 5)/𝑑𝑥 1/𝑦 × 𝑑𝑦/𝑑𝑥 = 2/(𝑥 + 3) (𝑑𝑥/𝑑𝑥+𝑑(3)/𝑑𝑥) + 3/(𝑥 + 4) (𝑑𝑥/𝑑𝑥+𝑑(4)/𝑑𝑥) + 4/(𝑥 +5) (𝑑𝑥/𝑑𝑥+𝑑(5)/𝑑𝑥) 1/𝑦 × 𝑑𝑦/𝑑𝑥 = 2/(𝑥 + 3) (1+0) + 3/(𝑥 + 4) (1+0) + 4/(𝑥 + 5) (1+0) 1/𝑦 × 𝑑𝑦/𝑑𝑥 = 2/(𝑥 + 3) + 3/(𝑥 + 4) + 4/(𝑥 + 5) 𝑑𝑦/𝑑𝑥 = 𝑦 (2/(𝑥 + 3) " + " 3/(𝑥 + 4) " + " 4/(𝑥 + 5)) Putting value of 𝑦 𝑑𝑦/𝑑𝑥 = (𝑥 + 3)^2 . (𝑥 + 4)^3 . (𝑥 + 5)^(4 ) (2/((𝑥 + 3) ) "+ " 3/((𝑥 + 4) ) " + " 4/((𝑥 + 5) )) 𝑑𝑦/𝑑𝑥 = (𝑥 + 3)^2 (𝑥 + 4)^3 (𝑥 + 5)^(4 ) ((2(𝑥 + 4) (𝑥 + 5) + 3(𝑥 + 3) (𝑥 + 5) + 4(𝑥 + 3) (𝑥 + 4))/((𝑥 + 3) (𝑥 + 4) (𝑥 + 5) )) 𝑑𝑦/𝑑𝑥 = ((𝑥 + 3)^2 (𝑥 + 4)^3 〖 (𝑥 + 5)〗^(4 ))/((𝑥 + 3) (𝑥 + 4) (𝑥 + 5) ) (2(𝑥^2+4𝑥+5𝑥+20)+3(𝑥^2+3𝑥+5𝑥+15)+ 4(𝑥^2+3𝑥+4𝑥+12)) 𝑑𝑦/𝑑𝑥 =(𝑥 + 3) (𝑥 + 4)^2 〖 (𝑥 + 5)〗^(3 ) (2(𝑥^2+9𝑥+20)+3(𝑥^2+8𝑥+15)+4(𝑥^2+7𝑥+12)) 𝑑𝑦/𝑑𝑥 =(𝑥 + 3) (𝑥 + 4)^2 〖 (𝑥 + 5)〗^(3 ) (2𝑥^2+18𝑥+40+3𝑥^2+24𝑥+45+4𝑥^2+28𝑥+48) 𝑑𝑦/𝑑𝑥 =(𝑥 + 3) (𝑥 + 4)^2 〖 (𝑥 + 5)〗^(3 ) (2𝑥^2+3𝑥^2+4𝑥^2 18𝑥+24𝑥+28𝑥+40+45+48) 𝒅𝒚/𝒅𝒙 =(𝒙 + 𝟑) (𝒙 + 𝟒)^𝟐 〖 (𝒙 + 𝟓)〗^(𝟑 ) (𝟗𝒙^𝟐+𝟕𝟎𝒙+𝟏𝟑𝟑)