Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12


Last updated at Jan. 3, 2020 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Ex 5.5, 3 Differentiate the functions in, (logβ‘π₯ )^cosβ‘π₯ Let π¦=(logβ‘π₯ )^cosβ‘π₯ Taking log both sides logβ‘π¦ = logβ‘γγ (logβ‘π₯ )γ^cosβ‘π₯ γ logβ‘π¦ = cosβ‘γπ₯ .γlog γβ‘(logβ‘π₯ ) γ Differentiating both sides π€.π.π‘.π₯. π(logβ‘π¦)/ππ₯ = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ¦) = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ π(logβ‘π¦ )/ππ₯ (ππ¦/ππ₯) = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ 1/π¦ . ππ¦/ππ₯ = π(cosβ‘γπ₯ .γ log γβ‘(logβ‘π₯ ) γ )/ππ₯ 1/π¦ ππ¦/ππ₯ = π(cosβ‘π₯ )/ππ₯ . γ log γβ‘(logβ‘π₯ ) + π(γ log γβ‘(logβ‘π₯ ) )/ππ₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + 1/logβ‘π₯ . π(logβ‘π₯ )/ππ₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + 1/logβ‘π₯ Γ 1/π₯ . cosβ‘π₯ 1/π¦ ππ¦/ππ₯ = γβsinγβ‘π₯ . γlog γβ‘(logβ‘π₯ ) + cosβ‘π₯/(π₯ logβ‘π₯ ) ππ¦/ππ₯ = π¦ (γβsinγβ‘π₯ " . " γlog γβ‘(logβ‘π₯ )" + " cosβ‘π₯/(π₯ logβ‘π₯ )) Using product rule in πππ β‘γπ₯ .γ πππ γβ‘(πππβ‘π₯ ) γ (π’π£)β = π’βπ£ + π£βπ’ Putting values of π¦ ππ¦/ππ₯ = (πππβ‘π₯ )^πππ β‘π₯ (γβπ ππγβ‘π₯ " . " γπππ γβ‘(πππβ‘π₯ )" + " πππ β‘π₯/(π₯ πππβ‘π₯ )) π π/π π = (πππβ‘π )^πππβ‘π (πππβ‘π/(π πππβ‘π ) γ β πππγβ‘π " . " γπ₯π¨π γβ‘(πππβ‘π ) )
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important You are here
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
About the Author