Get live Maths 1-on-1 Classs - Class 6 to 12

Ex 5.5

Ex 5.5, 1
Important

Ex 5.5, 2

Ex 5.5, 3 Important

Ex 5.5, 4

Ex 5.5, 5

Ex 5.5,6 Important

Ex 5.5, 7 Important

Ex 5.5, 8

Ex 5.5, 9 Important

Ex 5.5, 10 Important

Ex 5.5, 11 Important You are here

Ex 5.5, 12

Ex 5.5, 13

Ex 5.5, 14 Important

Ex 5.5, 15

Ex 5.5, 16 Important

Ex 5.5, 17 Important

Ex 5.5, 18

Last updated at March 16, 2023 by Teachoo

Ex 5.5, 11 Differentiate the functions in, 〖(𝑥 𝑐𝑜𝑠𝑥 ) 〗^𝑥 + 〖(𝑥 𝑠𝑖𝑛𝑥 ) 〗^(1/𝑥)𝑦 = 〖(𝑥 𝑐𝑜𝑠𝑥 ) 〗^𝑥 + 〖(𝑥 𝑠𝑖𝑛𝑥 ) 〗^(1/𝑥) Let 𝑢 = 〖(𝑥 𝑐𝑜𝑠𝑥 ) 〗^𝑥 , 𝑣 = 〖(𝑥 𝑠𝑖𝑛𝑥 ) 〗^(1/𝑥) 𝑦 = 𝑢+𝑣 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑𝑦/𝑑𝑥 = (𝑑 (𝑢 + 𝑣))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 + 𝑑𝑣/𝑑𝑥 Calculating 𝒅𝒖/𝒅𝒙 𝑢 =〖 (𝑥 𝑐𝑜𝑠𝑥 ) 〗^𝑥 Taking log both sides . log𝑢 = log〖 (𝑥 𝑐𝑜𝑠𝑥 ) 〗^𝑥 log𝑢 = 𝑥 . log (𝑥 𝑐𝑜𝑠𝑥 ) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log𝑢 )/𝑑𝑥 = (𝑑(𝑥 . log(𝑥 cos𝑥 ) ) )/𝑑𝑥 𝑑(log𝑢 )/𝑑𝑢 . 𝑑𝑢/𝑑𝑥 = (𝑑(𝑥 . log(𝑥 cos𝑥 ) ) )/𝑑𝑥 1/𝑢 (𝑑𝑢/𝑑𝑥) = (𝑑(𝑥 . log(𝑥 cos𝑥 ) ) )/𝑑𝑥 (As 𝑙𝑜𝑔(𝑎^𝑏 )=𝑏 . 𝑙𝑜𝑔𝑎) Using product Rule As (𝑢𝑣)’ = 𝑢’𝑣 + 𝑣’𝑢 1/𝑢 (𝑑𝑢/𝑑𝑥) = 𝑑𝑥/𝑑𝑥 log〖(𝑥 𝑐𝑜𝑠 𝑥)〗+𝑥 (𝑑(𝑙𝑜𝑔(𝑥 𝑐𝑜𝑠𝑥 ) ) )/𝑑𝑥 1/𝑢 (𝑑𝑢/𝑑𝑥) = log〖(𝑥 cos𝑥)〗+𝑥/(𝑥 cos𝑥 ) × (𝑥 𝑐𝑜𝑠 𝑥)^′ 1/𝑢 (𝑑𝑢/𝑑𝑥) = log〖(𝑥 cos𝑥)〗+1/cos𝑥 × (1.cos𝑥+𝑥(−sin𝑥 )) 1/𝑢 (𝑑𝑢/𝑑𝑥) = log〖(𝑥 cos𝑥)〗+((cos𝑥 − 𝑥 sin𝑥 ))/cos𝑥 1/𝑢 (𝑑𝑢/𝑑𝑥) = log〖(𝑥 cos𝑥)〗+cos𝑥/cos𝑥 −(𝑥 sin𝑥)/cos𝑥 1/𝑢 (𝑑𝑢/𝑑𝑥) = log〖(𝑥 cos𝑥)〗+1−𝑥 𝑡𝑎𝑛 𝑥 𝑑𝑢/𝑑𝑥 = u (1−𝑥 tan𝑥+log〖(𝑥 cos𝑥 〗)) Putting value of 𝑢 𝑑𝑢/𝑑𝑥 = (𝑥 cos𝑥 )^𝑥 (1−𝑥 tan𝑥+𝒍𝒐𝒈(𝒙 𝒄𝒐𝒔𝒙 ) ) Calculating 𝒅𝒗/𝒅𝒙 𝑣=〖(𝑥 𝑠𝑖𝑛𝑥 ) 〗^(1/𝑥) Taking log both sides log𝑣=log〖 〖(𝑥 𝑠𝑖𝑛𝑥 ) 〗^(1/𝑥) 〗 log𝑣= 1/𝑥 log (𝑥 𝑠𝑖𝑛𝑥 ) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. (𝑑(log𝑣))/𝑑𝑥 = 𝑑(1/𝑥 " . " )/𝑑𝑥 (𝑑(log𝑣))/𝑑𝑣 . 𝑑𝑣/𝑑𝑥 = (1/𝑥 .log(𝑥 sin𝑥 ) )^′ 1/𝑣 × 𝑑𝑣/𝑑𝑥 = (1/𝑥 .log(𝑥 sin𝑥 ) )^′ 1/𝑣 × 𝑑𝑣/𝑑𝑥 = (((log〖(𝑥 sin𝑥)〗 )^′ 𝑥 + 𝑥^′ log〖(𝑥 sin𝑥)〗)/𝑥^2 ) Using quotient rule (𝑢/𝑣)^′ = (𝑢^′ 𝑣 − 𝑣^′ 𝑢)/𝑣^2 Where u = log (x sin x) , v = x 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/x^2 ((log〖(𝑥 sin𝑥)〗 )^′ 𝑥 + log〖(𝑥 sin𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/x^2 ([1/(𝑥 sin𝑥 ) \ ×(𝑥 sin𝑥 )^′ ]𝑥 + log〖(𝑥 sin𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/x^2 (1/sin𝑥 \ ×(𝑥 sin𝑥 )^′+ log〖(𝑥 sin𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/𝑥^2 (((1 . 𝑠𝑖𝑛𝑥 + 𝑥 𝑐𝑜𝑠𝑥))/𝑠𝑖𝑛𝑥 \ + 𝑙𝑜𝑔〖(𝑥 𝑠𝑖𝑛𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/𝑥^2 (((𝑠𝑖𝑛𝑥 + 𝑥 𝑐𝑜𝑠𝑥))/𝑠𝑖𝑛𝑥 \ + 𝑙𝑜𝑔〖(𝑥 𝑠𝑖𝑛𝑥)〗 ) 1/𝑣 × 𝑑𝑣/𝑑𝑥 = 1/𝑥^2 (1+𝑥 cot𝑥+ 𝑙𝑜𝑔〖(𝑥 𝑠𝑖𝑛𝑥)〗 ) 𝑑𝑣/𝑑𝑥 = 𝑣((1 + 〖𝑥 𝑐𝑜𝑡〗〖𝑥 〗 − 𝑙𝑜𝑔〖 (𝑥 𝑠𝑖𝑛𝑥 ) 〗)/𝑥^2 ) 𝑑𝑣/𝑑𝑥 = (𝑥 𝑠𝑖𝑛𝑥 )^(1/𝑥) ((1 + 〖𝑥 𝑐𝑜𝑡〗〖𝑥 〗− 𝑙𝑜𝑔 (𝑥 𝑠𝑖𝑛𝑥 ))/𝑥^2 ) Now, 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 + 𝑑𝑣/𝑑𝑥 Putting value of 𝑑𝑢/𝑑𝑥 & 𝑑𝑣/𝑑𝑥 𝒅𝒚/𝒅𝒙 = (𝒙 𝒄𝒐𝒔𝒙 )^𝒙 (𝟏 − 𝒙 𝒕𝒂𝒏𝒙+𝒍𝒐𝒈(𝒙 𝒄𝒐𝒔𝒙 ) ) + (𝒙 𝒔𝒊𝒏𝒙 )^(𝟏/𝒙) ((〖𝒙 𝒄𝒐𝒕〗〖𝒙 〗 + 𝟏 − 𝐥𝐨𝐠 (𝒙 𝒔𝒊𝒏𝒙 ))/𝒙^𝟐 )