



Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important You are here
Ex 5.5, 18
Last updated at May 29, 2023 by Teachoo
Ex 5.5, 17 Differentiate (𝑥^2 – 5𝑥 + 8) (𝑥^3 + 7𝑥 + 9) (ii) by expanding the product to obtain a single polynomial.By Expanding the product to obtain a single polynomial . 𝑦=(𝑥^2 " – 5" 𝑥" + 8" ) (𝑥^3 " + 7" 𝑥" + 9" ) 𝑦=𝑥^2 (𝑥^3 " + 7" 𝑥" + 9" )" – 5" 𝑥(𝑥^3 " + 7" 𝑥" + 9" )" + 8 " (𝑥^3 " + 7" 𝑥" + 9" ) 𝑦=𝑥^5+7𝑥^3+9𝑥^2−5𝑥^4−35𝑥^2−45𝑥+8𝑥^3+56𝑥+72 𝑦=𝑥^5−5𝑥^4+15𝑥^3−26𝑥^2+11𝑥+72 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑𝑦/𝑑𝑥 = (𝑑(𝑥^5 − 5𝑥^4 + 15𝑥^3− 26𝑥^2 + 11𝑥 + 72" " )" " )/𝑑𝑥 𝑑𝑦/𝑑𝑥 = (𝑑(𝑥^5))/𝑑𝑥 − (𝑑(5𝑥^4))/𝑑𝑥 + (𝑑(15𝑥^3)" " )/𝑑𝑥 − (𝑑(26𝑥^2)" " )/𝑑𝑥 + (𝑑(11𝑥)" " )/𝑑𝑥 + (𝑑(72)" " )/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 5𝑥^4−20𝑥^3+45𝑥^2−52𝑥+11 + 0 𝒅𝒚/𝒅𝒙 = 𝟓𝒙^𝟒−𝟐𝟎𝒙^𝟑+𝟒𝟓𝒙^𝟐−𝟓𝟐𝒙+𝟏𝟏 Ex 5.5, 17 Differentiate (𝑥^2– 5 𝑥 + 8) (𝑥^3 + 7 𝑥 + 9) (iii) by logarithmic differentiation.By logarithmic differentiation 𝑦= (𝑥^2 "– 5 " 𝑥" + 8" ) (𝑥^3 " + 7 " 𝑥" + 9" ) Taking log both sides log 𝑦 = log ((𝑥^2 " – 5" 𝑥" + 8" ) (𝑥^3 " + 7" 𝑥" + 9" )) log 𝑦=log (𝑥^2 " – 5" 𝑥" + 8" )+〖log 〗(𝑥^3 " + 7" 𝑥" + 9" ) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. (𝑑(log𝑦 ) )/𝑑𝑥 = 𝑑(log (𝑥^2 " – " 5𝑥" + " 8) + 〖log 〗(𝑥^3 " + " 7𝑥" +" 9) )/𝑑𝑥 (𝑑(log𝑦 ) )/𝑑𝑥 . 𝑑𝑦/𝑑𝑦 = 𝑑(log (𝑥^2 " – " 5𝑥" + " 8))/𝑑𝑥 + 𝑑(〖log 〗(𝑥^3 " + " 7𝑥" +" 9) )/𝑑𝑥 (𝑑(log𝑦 ) )/𝑑𝑦 . 𝑑𝑦/𝑑𝑥 = 1/((𝑥^2 " – " 5𝑥" + " 8) ) . 𝑑(𝑥^2 " – " 5𝑥" + " 8)/𝑑𝑥 + 1/((𝑥^3 " + " 7𝑥" +" 9) ) . 𝑑(𝑥^3 " + " 7𝑥" +" 9)/𝑑𝑥 (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/(𝑥^2 " – " 5𝑥" + " 8) . (2x – 5 + 0) + 1/(𝑥^3 " + " 7𝑥" +" 9) .(3x2 + 7 + 0) (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = ((2𝑥 − 5))/(𝑥^2 " – " 5𝑥" + " 8) + ((3𝑥^2 + 7))/(𝑥^3 " + " 7𝑥" +" 9) (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = ((2𝑥 − 5) (𝑥^3 " + " 7𝑥" +" 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) ) 𝑑𝑦/𝑑𝑥 = 𝑦(((2𝑥 − 5) (𝑥^3 " + " 7𝑥" +" 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) )) 𝑑𝑦/𝑑𝑥 =(𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9)(((2𝑥 − 5) (𝑥^3 " + " 7𝑥" + " 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) )) (𝑑(log𝑦 ) )/𝑑𝑥 . 𝑑𝑦/𝑑𝑦 = 𝑑(log (𝑥^2 " – " 5𝑥" + " 8))/𝑑𝑥 + 𝑑(〖log 〗(𝑥^3 " + " 7𝑥" +" 9) )/𝑑𝑥 (𝑑(log𝑦 ) )/𝑑𝑦 . 𝑑𝑦/𝑑𝑥 = 1/((𝑥^2 " – " 5𝑥" + " 8) ) . 𝑑(𝑥^2 " – " 5𝑥" + " 8)/𝑑𝑥 + 1/((𝑥^3 " + " 7𝑥" +" 9) ) . 𝑑(𝑥^3 " + " 7𝑥" +" 9)/𝑑𝑥 (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/(𝑥^2 " – " 5𝑥" + " 8) . (2x – 5 + 0) + 1/(𝑥^3 " + " 7𝑥" +" 9) .(3x2 + 7 + 0) (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = ((2𝑥 − 5))/(𝑥^2 " – " 5𝑥" + " 8) + ((3𝑥^2 + 7))/(𝑥^3 " + " 7𝑥" +" 9) (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = ((2𝑥 − 5) (𝑥^3 " + " 7𝑥" +" 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) ) 𝑑𝑦/𝑑𝑥 = 𝑦(((2𝑥 − 5) (𝑥^3 " + " 7𝑥" +" 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) )) 𝑑𝑦/𝑑𝑥 =(𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9)(((2𝑥 − 5) (𝑥^3 " + " 7𝑥" + " 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) )) (𝑑(log𝑦 ) )/𝑑𝑥 . 𝑑𝑦/𝑑𝑦 = 𝑑(log (𝑥^2 " – " 5𝑥" + " 8))/𝑑𝑥 + 𝑑(〖log 〗(𝑥^3 " + " 7𝑥" +" 9) )/𝑑𝑥 (𝑑(log𝑦 ) )/𝑑𝑦 . 𝑑𝑦/𝑑𝑥 = 1/((𝑥^2 " – " 5𝑥" + " 8) ) . 𝑑(𝑥^2 " – " 5𝑥" + " 8)/𝑑𝑥 + 1/((𝑥^3 " + " 7𝑥" +" 9) ) . 𝑑(𝑥^3 " + " 7𝑥" +" 9)/𝑑𝑥 (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/(𝑥^2 " – " 5𝑥" + " 8) . (2x – 5 + 0) + 1/(𝑥^3 " + " 7𝑥" +" 9) .(3x2 + 7 + 0) (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = ((2𝑥 − 5))/(𝑥^2 " – " 5𝑥" + " 8) + ((3𝑥^2 + 7))/(𝑥^3 " + " 7𝑥" +" 9) (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = ((2𝑥 − 5) (𝑥^3 " + " 7𝑥" +" 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) ) 𝑑𝑦/𝑑𝑥 = 𝑦(((2𝑥 − 5) (𝑥^3 " + " 7𝑥" +" 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) )) 𝑑𝑦/𝑑𝑥 =(𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9)(((2𝑥 − 5) (𝑥^3 " + " 7𝑥" + " 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) )) (𝑑(log𝑦 ) )/𝑑𝑥 . 𝑑𝑦/𝑑𝑦 = 𝑑(log (𝑥^2 " – " 5𝑥" + " 8))/𝑑𝑥 + 𝑑(〖log 〗(𝑥^3 " + " 7𝑥" +" 9) )/𝑑𝑥 (𝑑(log𝑦 ) )/𝑑𝑦 . 𝑑𝑦/𝑑𝑥 = 1/((𝑥^2 " – " 5𝑥" + " 8) ) . 𝑑(𝑥^2 " – " 5𝑥" + " 8)/𝑑𝑥 + 1/((𝑥^3 " + " 7𝑥" +" 9) ) . 𝑑(𝑥^3 " + " 7𝑥" +" 9)/𝑑𝑥 (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = 1/(𝑥^2 " – " 5𝑥" + " 8) . (2x – 5 + 0) + 1/(𝑥^3 " + " 7𝑥" +" 9) .(3x2 + 7 + 0) (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = ((2𝑥 − 5))/(𝑥^2 " – " 5𝑥" + " 8) + ((3𝑥^2 + 7))/(𝑥^3 " + " 7𝑥" +" 9) (1 )/𝑦 . 𝑑𝑦/𝑑𝑥 = ((2𝑥 − 5) (𝑥^3 " + " 7𝑥" +" 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) ) 𝑑𝑦/𝑑𝑥 = 𝑦(((2𝑥 − 5) (𝑥^3 " + " 7𝑥" +" 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) )) 𝑑𝑦/𝑑𝑥 =(𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9)(((2𝑥 − 5) (𝑥^3 " + " 7𝑥" + " 9) + (3𝑥^2 + 7) (𝑥^2 " – " 5𝑥" + " 8))/((𝑥^2 " – " 5𝑥" + " 8) (𝑥^3 " + " 7𝑥" +" 9) ))