Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12





Last updated at Jan. 3, 2020 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Ex 5.5, 10 Differentiate the functions in, π₯^(π₯ πππ β‘π₯ ) + (π₯2+ 1)/(π₯2β 1) Let y = π₯^(π₯ πππ β‘π₯ ) + (π₯2+ 1)/(π₯2β 1) Let π’ =π₯^(π₯ πππ β‘π₯ ) & π£ =(π₯2+ 1)/(π₯2β 1) β΄ π¦ = π’+π£ Differentiating both sides π€.π.π‘.π₯. ππ¦/ππ₯ = (π (π’ + π£))/ππ₯ ππ¦/ππ₯ = ππ’/ππ₯ + ππ£/ππ₯ Calculating π π/π π π’ =π₯^(π₯ πππ β‘π₯ ) Taking log both sides logβ‘π’=logβ‘γπ₯^(π₯ πππ β‘π₯ ) γ logβ‘π’=π₯ πππ β‘π₯. logβ‘γ π₯γ Differentiating both sides π€.π.π‘.π₯. (π(logβ‘π’))/ππ₯ = π(π₯ πππ β‘π₯ logβ‘π₯ )/ππ₯ (π(logβ‘π’))/ππ₯ . ππ’/ππ’ = π(π₯ πππ β‘π₯ logβ‘π₯ )/ππ₯ (π(logβ‘π’))/ππ’ . ππ’/ππ₯ = π(π₯ πππ β‘π₯ logβ‘π₯ )/ππ₯ (As πππβ‘(π^π) = π . πππβ‘π) 1/π’ . ππ’/ππ₯ = π(π₯ πππ β‘π₯ logβ‘π₯ )/ππ₯ 1/π’ . ππ’/ππ₯ = π(π₯ cosβ‘π₯ )/ππ₯ logβ‘π₯ + π₯ πππ β‘π₯ (π(logβ‘π₯))/ππ₯ 1/π’ . ππ’/ππ₯ = π(π₯ cosβ‘π₯ )/ππ₯ logβ‘π₯ + π₯ πππ β‘π₯ Γ1/π₯ 1/π’ . ππ’/ππ₯ = [π(π₯)/ππ₯ cosβ‘π₯+π₯ π(cosβ‘π₯ )/ππ₯]logβ‘π₯ + πππ β‘π₯ 1/π’ . ππ’/ππ₯ = [cosβ‘π₯βπ₯ π ππ π₯]logβ‘π₯ + πππ β‘π₯ 1/π’ . ππ’/ππ₯ = cosβ‘π₯ . logβ‘π₯ β π₯ sin π₯ logβ‘π₯+cosβ‘π₯ Using product Rule As (π’π£)β = π’βπ£ + π£βπ’ Where u = x cos x, v = log x 1/π’ . ππ’/ππ₯ = cosβ‘π₯ . logβ‘π₯+cosβ‘π₯β π₯ sin π₯ logβ‘π₯ 1/π’ ππ’/ππ₯ = cosβ‘π₯ (logβ‘π₯+1)βπ₯ sinβ‘γπ₯ logβ‘π₯ γ ππ’/ππ₯ = u (cosβ‘π₯ (logβ‘π₯+1)βπ₯ sinβ‘γπ₯ logβ‘π₯ γ ) ππ’/ππ₯ = π₯^(π₯ πππ β‘π₯ ) (cosβ‘γ (logβ‘γπ₯+1γ )βπ₯ sinβ‘γπ₯ logβ‘π₯ γ γ ) Calculating π π/π π π£= (π₯2 + 1)/(π₯2 β 1) Differentiating both sides π€.π.π‘.π₯. π(π£)/ππ₯ = π((π₯2 + 1)/(π₯2 β 1))/ππ₯ π(π£)/ππ₯ . ππ£/ππ£ = π((π₯2 + 1)/(π₯2 β 1))/ππ₯ π(π£)/ππ£ . ππ£/ππ₯ = π((π₯2 + 1)/(π₯2 β 1))/ππ₯ 1. ππ£/ππ₯ = π((π₯2 + 1)/(π₯2 β 1))/ππ₯ ππ£/ππ₯ = (π(π₯2+ 1)/ππ₯ . (π₯^2 β 1) β π(π₯^2 β 1)/ππ₯ . (π₯2+ 1))/(π₯^2 β 1)^2 ππ£/ππ₯ = ((2π₯ + 0) (π₯^2 β1) β (2π₯ β 0) (π₯^2 + 1))/(π₯^2 β1)^2 Using quotient rule (π’/π£)β² = (π’^β² π£ β π£^β² π’)/π£^2 ππ£/ππ₯ = (2π₯ (π₯^2 β1) β 2π₯ (π₯^2 + 1))/(π₯^2 β1)^2 ππ£/ππ₯ = (2π₯ (π₯^2 β1 βπ₯^2 β1))/(π₯^2 β1)^2 ππ£/ππ₯ = (2π₯ (β 2))/(π₯^2 β1)^2 ππ£/ππ₯ = (β4π₯)/(π₯^2 β1)^2 Now ππ¦/ππ₯ = ππ’/ππ₯ + ππ£/ππ₯ Putting value of ππ’/ππ₯ & ππ£/ππ₯ π π/π π = π^γπ ππ¨π¬γβ‘π (ππ¨π¬β‘γπ (π+π₯π¨π β‘π ) βπ π¬π’π§β‘γπ π₯π¨π β‘π γ γ ) β ππ/(π^π βπ)^π
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important You are here
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
About the Author