




Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important You are here
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at May 29, 2023 by Teachoo
Ex 5.5, 10 Differentiate the functions in, 𝑥^(𝑥 𝑐𝑜𝑠𝑥 ) + (𝑥2+ 1)/(𝑥2− 1)Let y = 𝑥^(𝑥 𝑐𝑜𝑠𝑥 ) + (𝑥2+ 1)/(𝑥2− 1) Let 𝑢 =𝑥^(𝑥 𝑐𝑜𝑠𝑥 ) & 𝑣 =(𝑥2+ 1)/(𝑥2− 1) ∴ 𝑦 = 𝑢+𝑣 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑𝑦/𝑑𝑥 = (𝑑 (𝑢 + 𝑣))/𝑑𝑥 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 + 𝑑𝑣/𝑑𝑥 Calculating 𝒅𝒖/𝒅𝒙 𝑢 =𝑥^(𝑥 𝑐𝑜𝑠𝑥 ) Taking log both sides log𝑢=log〖𝑥^(𝑥 𝑐𝑜𝑠𝑥 ) 〗 log𝑢=𝑥 𝑐𝑜𝑠𝑥. log〖 𝑥〗 Differentiating both sides 𝑤.𝑟.𝑡.𝑥. (𝑑(log𝑢))/𝑑𝑥 = 𝑑(𝑥 𝑐𝑜𝑠𝑥 log𝑥 )/𝑑𝑥 (𝑑(log𝑢))/𝑑𝑥 . 𝑑𝑢/𝑑𝑢 = 𝑑(𝑥 𝑐𝑜𝑠𝑥 log𝑥 )/𝑑𝑥 (𝑑(log𝑢))/𝑑𝑢 . 𝑑𝑢/𝑑𝑥 = 𝑑(𝑥 𝑐𝑜𝑠𝑥 log𝑥 )/𝑑𝑥 (As 𝑙𝑜𝑔(𝑎^𝑏) = 𝑏 . 𝑙𝑜𝑔𝑎) 1/𝑢 . 𝑑𝑢/𝑑𝑥 = 𝑑(𝑥 𝑐𝑜𝑠𝑥 log𝑥 )/𝑑𝑥 1/𝑢 . 𝑑𝑢/𝑑𝑥 = 𝑑(𝑥 cos𝑥 )/𝑑𝑥 log𝑥 + 𝑥 𝑐𝑜𝑠𝑥 (𝑑(log𝑥))/𝑑𝑥 1/𝑢 . 𝑑𝑢/𝑑𝑥 = 𝑑(𝑥 cos𝑥 )/𝑑𝑥 log𝑥 + 𝑥 𝑐𝑜𝑠𝑥 ×1/𝑥 1/𝑢 . 𝑑𝑢/𝑑𝑥 = [𝑑(𝑥)/𝑑𝑥 cos𝑥+𝑥 𝑑(cos𝑥 )/𝑑𝑥]log𝑥 + 𝑐𝑜𝑠𝑥 1/𝑢 . 𝑑𝑢/𝑑𝑥 = [cos𝑥−𝑥 𝑠𝑖𝑛 𝑥]log𝑥 + 𝑐𝑜𝑠𝑥 1/𝑢 . 𝑑𝑢/𝑑𝑥 = cos𝑥 . log𝑥 − 𝑥 sin 𝑥 log𝑥+cos𝑥 Using product Rule As (𝑢𝑣)’ = 𝑢’𝑣 + 𝑣’𝑢 Where u = x cos x, v = log x 1/𝑢 . 𝑑𝑢/𝑑𝑥 = cos𝑥 . log𝑥+cos𝑥− 𝑥 sin 𝑥 log𝑥 1/𝑢 𝑑𝑢/𝑑𝑥 = cos𝑥 (log𝑥+1)−𝑥 sin〖𝑥 log𝑥 〗 𝑑𝑢/𝑑𝑥 = u (cos𝑥 (log𝑥+1)−𝑥 sin〖𝑥 log𝑥 〗 ) 𝑑𝑢/𝑑𝑥 = 𝑥^(𝑥 𝑐𝑜𝑠𝑥 ) (cos〖 (log〖𝑥+1〗 )−𝑥 sin〖𝑥 log𝑥 〗 〗 ) Calculating 𝒅𝒗/𝒅𝒙 𝑣= (𝑥2 + 1)/(𝑥2 − 1) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(𝑣)/𝑑𝑥 = 𝑑((𝑥2 + 1)/(𝑥2 − 1))/𝑑𝑥 𝑑(𝑣)/𝑑𝑥 . 𝑑𝑣/𝑑𝑣 = 𝑑((𝑥2 + 1)/(𝑥2 − 1))/𝑑𝑥 𝑑(𝑣)/𝑑𝑣 . 𝑑𝑣/𝑑𝑥 = 𝑑((𝑥2 + 1)/(𝑥2 − 1))/𝑑𝑥 1. 𝑑𝑣/𝑑𝑥 = 𝑑((𝑥2 + 1)/(𝑥2 − 1))/𝑑𝑥 𝑑𝑣/𝑑𝑥 = (𝑑(𝑥2+ 1)/𝑑𝑥 . (𝑥^2 − 1) − 𝑑(𝑥^2 − 1)/𝑑𝑥 . (𝑥2+ 1))/(𝑥^2 − 1)^2 𝑑𝑣/𝑑𝑥 = ((2𝑥 + 0) (𝑥^2 −1) − (2𝑥 − 0) (𝑥^2 + 1))/(𝑥^2 −1)^2 Using quotient rule (𝑢/𝑣)′ = (𝑢^′ 𝑣 − 𝑣^′ 𝑢)/𝑣^2 𝑑𝑣/𝑑𝑥 = (2𝑥 (𝑥^2 −1) − 2𝑥 (𝑥^2 + 1))/(𝑥^2 −1)^2 𝑑𝑣/𝑑𝑥 = (2𝑥 (𝑥^2 −1 −𝑥^2 −1))/(𝑥^2 −1)^2 𝑑𝑣/𝑑𝑥 = (2𝑥 (− 2))/(𝑥^2 −1)^2 𝑑𝑣/𝑑𝑥 = (−4𝑥)/(𝑥^2 −1)^2 Now 𝑑𝑦/𝑑𝑥 = 𝑑𝑢/𝑑𝑥 + 𝑑𝑣/𝑑𝑥 Putting value of 𝑑𝑢/𝑑𝑥 & 𝑑𝑣/𝑑𝑥 𝒅𝒚/𝒅𝒙 = 𝒙^〖𝒙 𝐜𝐨𝐬〗𝒙 (𝐜𝐨𝐬〖𝒙 (𝟏+𝐥𝐨𝐠𝒙 ) −𝒙 𝐬𝐢𝐧〖𝒙 𝐥𝐨𝐠𝒙 〗 〗 ) − 𝟒𝒙/(𝒙^𝟐 −𝟏)^𝟐