Ex 5.5, 15 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at April 16, 2024 by Teachoo
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15 You are here
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at April 16, 2024 by Teachoo
Ex 5.5, 15 Find 𝑑𝑦/𝑑𝑥 of the functions in, 𝑥𝑦= 𝑒^((𝑥 −𝑦))Given 𝑥𝑦= 𝑒^((𝑥 −𝑦)) Taking log both sides log (𝑥𝑦) = log 𝑒^((𝑥 −𝑦)) log (𝑥𝑦) = (𝑥 −𝑦) log 𝑒 log 𝑥+log𝑦 = (𝑥 −𝑦) (1) log 𝑥+log𝑦 = (𝑥 −𝑦) (As 𝑙𝑜𝑔(𝑎^𝑏 )=𝑏 . 𝑙𝑜𝑔𝑎) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log 𝑥 + log𝑦 )/𝑑𝑥 = (𝑑(𝑥 − 𝑦))/𝑑𝑥 𝑑(log 𝑥)/𝑑𝑥 + 𝑑(log𝑦 )/𝑑𝑥 = 𝑑(𝑥)/𝑑𝑥 − 𝑑(𝑦)/𝑑𝑥 1/𝑥 + 𝑑(log𝑦 )/𝑑𝑥 . 𝑑𝑦/𝑑𝑦 = 1 − 𝑑𝑦/𝑑𝑥 1/𝑥 + 𝑑(log𝑦 )/𝑑𝑦 . 𝑑𝑦/𝑑𝑥 = 1 − 𝑑𝑦/𝑑𝑥 1/𝑥 + 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 1 − 𝑑𝑦/𝑑𝑥 1/𝑦 . 𝑑𝑦/𝑑𝑥 + 𝑑𝑦/𝑑𝑥 = 1 − 1/𝑥 𝑑𝑦/𝑑𝑥 (1/𝑦 +1) = ("1 − " 1/𝑥) 𝑑𝑦/𝑑𝑥 ((1 + 𝑦)/𝑦) = ((𝑥 − 1)/𝑥) 𝑑𝑦/𝑑𝑥 = ((𝑥 − 1)/𝑦) . (𝑦/(1 + 𝑦)) 𝒅𝒚/𝒅𝒙 = 𝒚(𝒙 − 𝟏)/𝒙(𝟏 + 𝒚)