

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15 You are here
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at May 29, 2023 by Teachoo
Ex 5.5, 15 Find 𝑑𝑦/𝑑𝑥 of the functions in, 𝑥𝑦= 𝑒^((𝑥 −𝑦))Given 𝑥𝑦= 𝑒^((𝑥 −𝑦)) Taking log both sides log (𝑥𝑦) = log 𝑒^((𝑥 −𝑦)) log (𝑥𝑦) = (𝑥 −𝑦) log 𝑒 log 𝑥+log𝑦 = (𝑥 −𝑦) (1) log 𝑥+log𝑦 = (𝑥 −𝑦) (As 𝑙𝑜𝑔(𝑎^𝑏 )=𝑏 . 𝑙𝑜𝑔𝑎) Differentiating both sides 𝑤.𝑟.𝑡.𝑥. 𝑑(log 𝑥 + log𝑦 )/𝑑𝑥 = (𝑑(𝑥 − 𝑦))/𝑑𝑥 𝑑(log 𝑥)/𝑑𝑥 + 𝑑(log𝑦 )/𝑑𝑥 = 𝑑(𝑥)/𝑑𝑥 − 𝑑(𝑦)/𝑑𝑥 1/𝑥 + 𝑑(log𝑦 )/𝑑𝑥 . 𝑑𝑦/𝑑𝑦 = 1 − 𝑑𝑦/𝑑𝑥 1/𝑥 + 𝑑(log𝑦 )/𝑑𝑦 . 𝑑𝑦/𝑑𝑥 = 1 − 𝑑𝑦/𝑑𝑥 1/𝑥 + 1/𝑦 . 𝑑𝑦/𝑑𝑥 = 1 − 𝑑𝑦/𝑑𝑥 1/𝑦 . 𝑑𝑦/𝑑𝑥 + 𝑑𝑦/𝑑𝑥 = 1 − 1/𝑥 𝑑𝑦/𝑑𝑥 (1/𝑦 +1) = ("1 − " 1/𝑥) 𝑑𝑦/𝑑𝑥 ((1 + 𝑦)/𝑦) = ((𝑥 − 1)/𝑥) 𝑑𝑦/𝑑𝑥 = ((𝑥 − 1)/𝑦) . (𝑦/(1 + 𝑦)) 𝒅𝒚/𝒅𝒙 = 𝒚(𝒙 − 𝟏)/𝒙(𝟏 + 𝒚)