Ex 5.5, 14 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at April 16, 2024 by Teachoo
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important You are here
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at April 16, 2024 by Teachoo
Ex 5.5, 14 Find ππ¦/ππ₯ of the functions in, γ(cosβ‘γπ₯ γ)γ^π¦ = γ(cosβ‘γπ¦ γ)γ^π₯Given γ(cosβ‘π₯)γ^π¦ = γ(cosβ‘π¦)γ^π₯ Taking log both sides log γ(cosβ‘π₯)γ^π¦ = log γ(cosβ‘π¦)γ^π₯ π¦ . log (cosβ‘π₯)=π₯.logβ‘γ(cosβ‘π¦)γ Differentiating both sides π€.π.π‘.π₯. (π(π¦ . log (cosβ‘π₯)))/ππ₯ = π(π₯.γ logγβ‘γ(cosβ‘π¦)γ )/ππ₯ (As πππβ‘(π^π )=π . πππβ‘π) Finding (π (π . πππ (πππβ‘π)))/π π (π(π¦ . πππ (πππ β‘π₯)))/ππ₯ = (π(π¦))/ππ₯ . log coπ β‘π₯ + (π(πππ (πππ β‘π₯)))/ππ₯ . π¦ = ππ¦/ππ₯ . log coπ β‘π₯ + 1/πππ β‘π₯ . π(πππ β‘π₯ )/ππ₯ . π¦ = ππ¦/ππ₯ . log coπ β‘π₯ + 1/πππ β‘π₯ . (βsinβ‘π₯ ) . π¦ = ππ¦/ππ₯ . log coπ β‘π₯ + ((βsinβ‘π₯ ))/πππ β‘π₯ . π¦ = ππ¦/ππ₯ . log coπ β‘π₯βtanβ‘π₯. π¦ Using product Rule As (π’π£)β = π’βπ£ + π£βπ’ Finding π (π.γ πππγβ‘γ(πππβ‘π)γ )/π π π(π₯.γ πππγβ‘γ(πππ β‘π¦)γ )/ππ₯ = (π(π₯))/ππ₯ . log coπ β‘π¦ + (π(πππ (πππ β‘π¦)))/ππ₯ . π₯ = log coπ β‘π¦ + 1/πππ β‘π¦ . π(πππ β‘π¦ )/ππ₯ . π₯ = log coπ β‘π¦ + 1/πππ β‘π¦ . π(πππ β‘π¦ )/ππ₯ . ππ¦/ππ¦ . π₯ = log coπ β‘π¦ + 1/πππ β‘π¦ . π(πππ β‘π¦ )/ππ¦ . ππ¦/ππ₯ . π₯ Using product Rule As (π’π£)β = π’βπ£ + π£βπ’ = log coπ β‘π¦ + 1/πππ β‘π¦ . (βsinβ‘π¦) . ππ¦/ππ₯ . π₯ = log coπ β‘π¦ + βtanβ‘π¦ . π₯ . ππ¦/ππ₯ Now , (π(π¦ . log (cosβ‘π₯)))/ππ₯ = π(π₯.γ logγβ‘γ(cosβ‘π¦)γ )/ππ₯ ππ¦/ππ₯ log coπ β‘π₯βtanβ‘π₯. π¦ = log coπ β‘π¦ β tanβ‘π¦ . π₯ . ππ¦/ππ₯ ππ¦/ππ₯ log coπ β‘π₯βπ¦ . tanβ‘π₯ = log coπ β‘π¦ β π₯ . tanβ‘π¦ . ππ¦/ππ₯ ππ¦/ππ₯ log coπ β‘π₯+π₯ tan ππ¦/ππ₯ = log coπ β‘π¦ + π¦ tanβ‘π₯ ππ¦/ππ₯ (log coπ β‘π₯+π₯ tan π¦) = log coπ β‘π¦ + π¦ tanβ‘π₯ π π/π π = (π₯π¨π πππβ‘π " + " π πππβ‘π)/(π₯π¨π πππβ‘π + π πππ§ π)