Ex 5.5,6 - Chapter 5 Class 12 Continuity and Differentiability
Last updated at April 16, 2024 by Teachoo
Ex 5.5
Ex 5.5, 2
Ex 5.5, 3 Important
Ex 5.5, 4
Ex 5.5, 5
Ex 5.5,6 Important You are here
Ex 5.5, 7 Important
Ex 5.5, 8
Ex 5.5, 9 Important
Ex 5.5, 10 Important
Ex 5.5, 11 Important
Ex 5.5, 12
Ex 5.5, 13
Ex 5.5, 14 Important
Ex 5.5, 15
Ex 5.5, 16 Important
Ex 5.5, 17 Important
Ex 5.5, 18
Last updated at April 16, 2024 by Teachoo
Ex 5.5, 6 Differentiate the functions in, (๐ฅ+1/๐ฅ)^๐ฅ+ ๐ฅ^((1 + 1/๐ฅ) ) Let ๐ฆ= (๐ฅ+1/๐ฅ)^๐ฅ+ ๐ฅ^((1 + 1/๐ฅ) ) Let ๐ข = (๐ฅ+1/๐ฅ)^๐ฅ , ๐ฃ = ๐ฅ^((1 + 1/๐ฅ) ) ๐ฆ = ๐ข+๐ฃ Differentiating both sides ๐ค.๐.๐ก.๐ฅ. ๐๐ฆ/๐๐ฅ = (๐ (๐ข + ๐ฃ))/๐๐ฅ ๐๐ฆ/๐๐ฅ = ๐๐ข/๐๐ฅ + ๐๐ฃ/๐๐ฅ Calculating ๐ ๐/๐ ๐ ๐ข = (๐ฅ+1/๐ฅ)^๐ฅ Taking log both sides logโก๐ข = log (๐ฅ+1/๐ฅ)^๐ฅ logโก๐ข = ๐ฅ log (๐ฅ+1/๐ฅ) Differentiating both sides ๐ค.๐.๐ก.๐ฅ. ๐(logโก๐ข )/๐๐ฅ = (๐ (๐ฅ log" " (๐ฅ + 1/๐ฅ)))/๐๐ฅ ๐(logโก๐ข )/๐๐ฅ (๐๐ข/๐๐ข) = (๐ (๐ฅ log" " (๐ฅ + 1/๐ฅ)))/๐๐ฅ (As ๐๐๐โก(๐^๐ )=๐ . ๐๐๐โก๐) ๐(logโก๐ข )/๐๐ข (๐๐ข/๐๐ฅ)" = " (๐ (๐ฅ log" " (๐ฅ + 1/๐ฅ)))/๐๐ฅ 1/๐ข (๐๐ข/๐๐ฅ)" = " (๐ (๐ฅ log" " (๐ฅ + 1/๐ฅ)))/๐๐ฅ 1/๐ข (๐๐ข/๐๐ฅ)" = " ๐(๐ฅ)/๐๐ฅ . log (๐ฅ + 1/๐ฅ) + ๐(log" " (๐ฅ + 1/๐ฅ))/๐๐ฅ . ๐ฅ 1/๐ข (๐๐ข/๐๐ฅ)" =" 1. log (๐ฅ + 1/๐ฅ) + ((1/(๐ฅ + 1/๐ฅ)).๐/๐๐ฅ (๐ฅ + 1/๐ฅ)) . ๐ฅ 1/๐ข (๐๐ข/๐๐ฅ)" =" log (๐ฅ + 1/๐ฅ) + (1/(๐ฅ + 1/๐ฅ) . (๐(๐ฅ)/๐๐ฅ+(๐ (1/๐ฅ))/๐๐ฅ)) . ๐ฅ Using product rule in ๐ฅ ๐๐๐" " (๐ฅ + 1/๐ฅ) As (uv)โ = uโ v + vโ u 1/๐ข (๐๐ข/๐๐ฅ)" =" log (๐ฅ+1/๐ฅ) + (1/(๐ฅ + 1/๐ฅ) . (1+(โ1)/๐ฅ^2 " " )) . ๐ฅ 1/๐ข (๐๐ข/๐๐ฅ)" =" log (๐ฅ+1/๐ฅ) + (๐ฅ/(๐ฅ^2 + 1) . (1โ1/๐ฅ^2 " " )) . ๐ฅ 1/๐ข (๐๐ข/๐๐ฅ)" =" log (๐ฅ+1/๐ฅ) + (๐ฅ/(๐ฅ^2 + 1) ((๐ฅ^2 โ 1)/๐ฅ^2 ).๐ฅ) 1/๐ข (๐๐ข/๐๐ฅ)" =" log (๐ฅ+1/๐ฅ) + (๐ฅ/(๐ฅ^2 + 1) ((๐ฅ^2 โ 1)/๐ฅ^2 ).๐ฅ) 1/๐ข (๐๐ข/๐๐ฅ)" =" log (๐ฅ+1/๐ฅ) + (๐ฅ^2/๐ฅ^2 ((๐ฅ^2 โ 1)/(๐ฅ^2 + 1))) 1/๐ข (๐๐ข/๐๐ฅ)" =" log (๐ฅ+1/๐ฅ) + ((๐ฅ^2 โ 1)/(๐ฅ^2+ 1)) ๐๐ข/๐๐ฅ "= " ๐ข (ใlog ใโก(๐ฅ+1/๐ฅ)+((๐ฅ^2 โ 1)/(๐ฅ^2+ 1))) ๐๐ข/๐๐ฅ "=" (๐ฅ+1/๐ฅ)^๐ฅ (ใlog ใโก(๐ฅ+1/๐ฅ)+((๐ฅ^2 โ 1)/(๐ฅ^2+ 1))) ๐ ๐/๐ ๐ "=" (๐+๐/๐)^๐ ((๐^๐ โ ๐)/(๐^๐+ ๐)โกใ+ ใ๐๐๐ ใโก(๐+๐/๐) ใ ) Calculating ๐ ๐/๐ ๐ ๐ฃ = ๐ฅ^(1 + 1/๐ฅ)" " Taking log both sides log ๐ฃ = log ๐ฅ^(1 + 1/๐ฅ)" " log ๐ฃ = (1 + 1/๐ฅ)log ๐ฅ^" " Differentiating both sides ๐ค.๐.๐ก.๐ฅ. ๐(logโก๐ฃ )/๐๐ฅ = (๐ ((1 + 1/๐ฅ)" . " log ๐ฅ))/๐๐ฅ ๐(logโก๐ฃ )/๐๐ฅ (๐๐ฃ/๐๐ฃ) = (๐ ((1 + 1/๐ฅ)" . " log ๐ฅ))/๐๐ฅ ๐(logโก๐ฃ )/๐๐ฃ (๐๐ฃ/๐๐ฅ) = (๐ ((1 + 1/๐ฅ)" . " log ๐ฅ))/๐๐ฅ 1/๐ฃ (๐๐ฃ/๐๐ฅ) = (๐ ((1 + 1/๐ฅ)" . " log ๐ฅ))/๐๐ฅ Using product rule in (๐ฅ+ 1/๐ฅ)" . " ๐๐๐ ๐ฅ 1/๐ฃ (๐๐ฃ/๐๐ฅ) = ๐(1 + 1/๐ฅ)/๐๐ฅ . logโก๐ฅ + ๐(logโก๐ฅ )/๐๐ฅ . (1 + 1/๐ฅ) 1/๐ฃ (๐๐ฃ/๐๐ฅ) = (๐(1)/๐๐ฅ+๐(1/๐ฅ)/๐๐ฅ) . logโก๐ฅ + 1/๐ฅ (1 + 1/๐ฅ) 1/๐ฃ (๐๐ฃ/๐๐ฅ) = (0+((โ1)/๐ฅ^2 )) . logโก๐ฅ + 1/๐ฅ (1 + 1/๐ฅ) 1/๐ฃ (๐๐ฃ/๐๐ฅ) = (โ1)/๐ฅ^2 . logโก๐ฅ + 1/๐ฅ (1 + 1/๐ฅ) 1/๐ฃ (๐๐ฃ/๐๐ฅ) = (โlogโก๐ฅ)/๐ฅ^2 + 1/๐ฅ + 1/๐ฅ^2 1/๐ฃ (๐๐ฃ/๐๐ฅ) = (โlogโก๐ฅ)/๐ฅ^2 + 1/๐ฅ + 1/๐ฅ^2 1/๐ฃ (๐๐ฃ/๐๐ฅ) = ((โlogโก๐ฅ + ๐ฅ + 1)/๐ฅ^2 ) ๐๐ฃ/๐๐ฅ = ๐ฃ ((โlogโก๐ฅ + ๐ฅ + 1)/๐ฅ^2 ) ๐๐ฃ/๐๐ฅ = ๐ฅ^((1 + 1/๐ฅ) ) ((๐ฅ + 1 โ logโก๐ฅ )/๐ฅ^2 ) Now ๐๐ฃ/๐๐ฅ = ๐๐ข/๐๐ฅ + ๐๐ฃ/๐๐ฅ Putting values of ๐๐ข/๐๐ฅ & ๐๐ฃ/๐๐ฅ ๐ ๐/๐ ๐ = (๐+๐/๐)^๐ ((๐^๐ โ ๐)/(๐^๐+ ๐)+๐ฅ๐จ๐ โก(๐+ ๐/๐) ) + ๐^((๐ + ๐/๐) ) ((๐ + ๐ โ ๐๐๐โก๐ )/๐^๐ )