Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Last updated at Sept. 24, 2018 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Example 21 Find the derivative of the function given by 𝑓 (𝑥) = sin(𝑥2). Let y= sin(𝑥2) We need to find derivative of 𝑦, 𝑤.𝑟.𝑡.𝑥 i.e. 𝑑𝑦𝑑𝑥 = 𝑑(sin𝑥2)𝑑𝑥 = cos x2 . 𝑑(𝑥2)𝑑𝑥 = cos x2 . 2𝑥2−1 = cos𝑥2 (2𝑥) = 𝟐𝒙 . 𝒄𝒐𝒔𝒙𝟐
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17 Important
Example 18
Example 19
Example 20 Important
Example 21 You are here
Example 22
Example 23
Example 24
Example 25
Example 26 Important
Example 27
Example 28
Example 29 Important
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35
Example 36 Important
Example 37 Important
Example 38
Example 39
Example 40
Example 41
Example 42 Important Not in Syllabus - CBSE Exams 2021
Example 43 Not in Syllabus - CBSE Exams 2021
Example 44 Important
Example 45 Important
Example 46
Example 47 Important
Example 48
About the Author