

Get live Maths 1-on-1 Classs - Class 6 to 12
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11 Important
Example 12
Example 13 Important
Example 14
Example 15 Important
Example 16
Example 17 Important
Example 18
Example 19
Example 20 Important
Example 21
Example 22
Example 23 Important
Example 24
Example 25
Example 26 Important
Example 27 You are here
Example 28
Example 29 (i)
Example 29 (ii) Important
Example 29 (iii) Important
Example 29 (iv)
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35
Example 36 Important
Example 37 Important
Example 38
Example 39 Important
Example 40
Example 41 Important
Example 42 Important Deleted for CBSE Board 2023 Exams
Example 43 Deleted for CBSE Board 2023 Exams
Example 44 (i)
Example 44 (ii) Important
Example 44 (iii) Important
Example 45 (i)
Example 45 (ii) Important
Example 45 (iii) Important
Example 46
Example 47 Important
Example 48
Last updated at March 16, 2023 by Teachoo
Example 27 Find the derivative of f given by f (x) = tanβ1 π₯ assuming it exists. π (π₯)=γπ‘ππγ^(β1) π₯ Let π= γπππγ^(βπ) π tanβ‘γπ¦=π₯γ π=πππ§β‘γπ γ Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (tanβ‘π¦ ))/ππ₯ 1 = (π (tanβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ 1 = (π (tanβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = γπ¬ππγ^π π . ππ¦/ππ₯ 1 = (π + πππππ) ππ¦/ππ₯ ππ¦/ππ₯ = 1/(1 + γπππ§γ^πβ‘π ) Putting π‘ππβ‘π¦ = π₯ ππ¦/ππ₯ = 1/(1 + π^π ) Hence (π (γπππ§γ^(βπ)β‘γπ)γ)/π π = π/(π + π^π ) As π¦ = γπ‘ππγ^(β1) π₯ So, πππβ‘π = π Derivative of γπππγ^(βπ) π π (π₯)=γπππ γ^(β1) π₯ Let π= γπππγ^(βπ) π cosβ‘γπ¦=π₯γ π=ππ¨π¬β‘γπ γ Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (cosβ‘π¦ ))/ππ₯ 1 = (π (cosβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ 1 = (π (cosβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = (βsinβ‘π¦) ππ¦/ππ₯ (β1)/sinβ‘π¦ =ππ¦/ππ₯ ππ¦/ππ₯ = (β1)/πππβ‘π ππ¦/ππ₯= (β1)/β(π β γπππγ^π π) Putting πππ β‘γπ¦=π₯γ ππ¦/ππ₯= (β1)/β(1 β π^π ) Hence, (π (γπππγ^(βπ) π" " ))/π π = (βπ)/β(π β π^π ) "We know that" γπ ππγ^2 π+γπππ γ^2 π=1 γπ ππγ^2 π=1βγπππ γ^2 π πππβ‘π½=β(πβγπππγ^π π½) " " As π¦ = γπππ γ^(β1) π₯ So, πππβ‘π = π Derivative of γπππγ^(βπ) π π (π₯)=γπππ‘γ^(β1) π₯ Let π= γπππγ^(βπ) π cotβ‘γπ¦=π₯γ π=ππ¨πβ‘γπ γ Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (cotβ‘π¦ ))/ππ₯ 1 = (π (cotβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ 1 = (π (cotβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = βππ¨γπ¬ππγ^π π . ππ¦/ππ₯ 1 = β(π +πππππ) ππ¦/ππ₯ ππ¦/ππ₯ = (β1)/(1 + γππ¨πγ^πβ‘π ) Putting πππ‘β‘π¦ = π₯ ππ¦/ππ₯ = (β1)/(π^π + π) Hence (π (γππ¨πγ^(βπ)β‘γπ)γ)/π π = (βπ)/(π^π + π) (π΄π γ πππ ππγ^2β‘γπ¦= γ1+γβ‘γπππ‘γ^2β‘π¦ γ) As π¦ = γπππ‘γ^(β1) π₯ So, πππβ‘π = π Derivative of γπππγ^(βπ) π π (π₯)=γπ ππγ^(β1) π₯ Let π= γπππγ^(βπ) π secβ‘γπ¦=π₯γ π=π¬ππβ‘γπ γ Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (secβ‘π¦ ))/ππ₯ 1 = (π (secβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ 1 = (π (secβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = πππβ‘π .πππβ‘π. ππ¦/ππ₯ ππ¦/ππ₯ = 1/(πππβ‘π .γ secγβ‘π¦ ) ππ¦/ππ₯ = 1/((β(γπ¬ππγ^πβ‘π β π)) .γ secγβ‘π¦ ) Putting value of π ππβ‘π¦ = π₯ ππ¦/ππ₯ = 1/((β(π₯^2 β 1 ) ) . π₯) ππ¦/ππ₯ = 1/(π₯ β(π₯^2 β 1 ) ) Hence π (γπππγ^(βπ) π)/π π = π/(π β(π^π β π ) ) As tan2 ΞΈ = sec2 ΞΈ β 1, tan ΞΈ = β("sec2 ΞΈ β 1" ) As π¦ = γπ ππγ^(β1) π₯ So, πππβ‘π = πDerivative of γπππππγ^(βπ) π π (π₯)=γπππ ππγ^(β1) π₯ Let π= γπππππγ^(βπ) π cosecβ‘γπ¦=π₯γ π=ππ¨π¬ππβ‘γπ γ 1 = (π (cosecβ‘π¦ ))/ππ¦ Γ ππ¦/ππ₯ 1 = βcosecβ‘π¦ .cotβ‘π¦ . ππ¦/ππ₯ ππ¦/ππ₯ = 1/(γβcosecγβ‘π¦ .πππβ‘π ) ππ¦/ππ₯ = 1/(γβcosecγβ‘π¦ . β(γππ¨πππγ^πβ‘π β π)) Putting value of πππ ππβ‘π¦ = π₯ ππ¦/ππ₯ = (β1)/(π₯ β(π₯^2 β 1 ) ) Hence π (γπππππγ^(βπ) π)/π π = (βπ)/(π β(π^π β π ) ) As cot2 ΞΈ = cosec2 ΞΈ β 1, cot ΞΈ = β("cosec2 ΞΈ β 1" ) Differentiating both sides π€.π.π‘.π₯ ππ₯/ππ₯ = (π (cosecβ‘π¦ ))/ππ₯ 1 = (π (cosecβ‘π¦ ))/ππ₯ Γ ππ¦/ππ¦ As cot2 ΞΈ = cosec2 ΞΈ β 1, cot ΞΈ = β("cosec2 ΞΈ β 1" ) As π¦ = coγπ ππγ^(β1) π₯ So, coπππβ‘π = π