Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12

Slide38.JPG

Slide39.JPG
Slide40.JPG Slide41.JPG Slide42.JPG Slide43.JPG

  1. Chapter 5 Class 12 Continuity and Differentiability
  2. Serial order wise

Transcript

Example 45 Differentiate the following 𝑀.π‘Ÿ.𝑑. π‘₯. (i) cos^(βˆ’1) (sin⁑π‘₯) Let 𝑓(π‘₯) = cos^(βˆ’1) (sin⁑π‘₯) 𝑓(π‘₯) = cos^(βˆ’1) (γ€–cos 〗⁑(πœ‹/2 βˆ’π‘₯) ) 𝒇(𝒙) = 𝝅/𝟐 βˆ’π’™ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = (𝑑 (πœ‹/2))/𝑑π‘₯ βˆ’ (𝑑(π‘₯))/𝑑π‘₯ 𝑓’(π‘₯) = 0 βˆ’ 1 𝒇’(𝒙) = βˆ’ 1 (𝐴𝑠 γ€– 𝑠𝑖𝑛 πœƒ 〗⁑〖=γ€–π‘π‘œπ‘  〗⁑〖(πœ‹/2 βˆ’π‘₯)γ€— γ€— ) ("As " (𝑑(π‘₯))/𝑑π‘₯ " = 1 & " πœ‹/2 " is constant" ) Example 45 Differentiate the following w.r.t. x. (ii) tan βˆ’1 (sin⁑π‘₯/( 1 +γ€– cos〗⁑〖π‘₯ γ€— )) Let 𝑓(π‘₯) = tan βˆ’1 (sin⁑π‘₯/( 1 +γ€– cos〗⁑〖π‘₯ γ€— )) 𝑓(π‘₯) = tan βˆ’1 ((2 γ€–sin 〗⁑〖π‘₯/2γ€— γ€– cos 〗⁑〖π‘₯/2γ€—)/( 1+ (2 cos^2⁑〖 π‘₯/2γ€— βˆ’ 1))) = tan βˆ’1 ((2 γ€–sin 〗⁑〖π‘₯/2γ€— γ€– cos 〗⁑〖π‘₯/2 γ€—)/( 2 cos^2⁑〖 π‘₯/2γ€— )) = tan βˆ’1 ((2 γ€–sin 〗⁑〖π‘₯/2γ€—)/( 2 cos⁑〖π‘₯/2γ€— )) We know that sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ Replacing ΞΈ by πœƒ/2 sin ΞΈ = 2 π’”π’Šπ’β‘γ€–πœ½/πŸγ€— π’„π’π’”β‘γ€–πœ½/πŸγ€— and cos 2ΞΈ = 2cos2 ΞΈ – 1 Replacing ΞΈ by πœƒ/2 cos ΞΈ = 2cos2 𝜽/𝟐 – 1 = tan βˆ’1 (γ€–sin 〗⁑〖π‘₯/2γ€—/( cos⁑〖 π‘₯/2γ€— )) = tan βˆ’1 (γ€–tan 〗⁑〖π‘₯/2γ€— ) = π‘₯/2 𝒇(𝒙) = 𝒙/𝟐 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = 1/2 (𝑑(π‘₯))/𝑑π‘₯ 𝒇’(𝒙) = 𝟏/𝟐 (As tan^(βˆ’1)⁑〖(tanβ‘πœƒ)γ€— =πœƒ) Example 45 Differentiate the following w.r.t. x. (iii) sin^(βˆ’1) ((2^( π‘₯+1) )/( 1 +γ€– 4 γ€—^π‘₯ )) Let 𝑓(π‘₯) = sin^(βˆ’1) ((2^( π‘₯+1) )/( 1 +γ€– 4 γ€—^π‘₯ )) 𝑓(π‘₯) = sin^(βˆ’1) ((2^( π‘₯). 2)/( 1 + (2^π‘₯ )^2 )) Let 𝟐^𝒙 = tan ΞΈ 𝑓(π‘₯) = sin^(βˆ’1) ((tanβ‘γ€–πœƒ γ€—. 2)/( 1 + tan^2β‘πœƒ )) = sin^(βˆ’1) ((2 tanβ‘γ€–πœƒ γ€— )/( 1 +γ€– tan^2γ€—β‘πœƒ )) = sin^(βˆ’1) (sin 2πœƒ) = 2πœƒ (sin⁑2πœƒ "= " (2 tanβ‘πœƒ)/(1 +γ€– tan^2γ€—β‘πœƒ )) (As 〖𝑠𝑖𝑛〗^(βˆ’1)⁑〖(π‘ π‘–π‘›β‘πœƒ)γ€— =πœƒ) ∴ 𝑓(π‘₯) = 2πœƒ As 2^π‘₯= tanβ‘πœƒ tan^(βˆ’1) (2^π‘₯ )=πœƒ ∴ 𝒇(𝒙) = 𝟐 (〖𝒕𝒂𝒏〗^(βˆ’πŸ) (𝟐^𝒙 )) Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = 2 (𝑑 (tan^(βˆ’1) 2^π‘₯ )" " )/𝑑π‘₯ 𝑓’(π‘₯) = 2 . 1/(1 + (2^π‘₯ )^2 ) . (𝒅 (𝟐^𝒙 )" " )/𝒅𝒙 𝑓’(π‘₯) = (2 )/(1 + (2^π‘₯ )^2 ) . 𝟐^𝒙 . π’π’π’ˆβ‘πŸ (𝐴𝑠 𝑑/𝑑π‘₯(γ€–π‘‘π‘Žπ‘›γ€—^(βˆ’1))=1/(1+π‘₯^2 )) (𝐴𝑠 𝑑/𝑑π‘₯ (π‘Ž^π‘₯ )=π‘Ž^π‘₯. π‘™π‘œπ‘”β‘π‘₯ ) 𝑓’(π‘₯) = (γ€–2. 2γ€—^π‘₯.γ€– log〗⁑2)/(1 + (2^π‘₯ )^2 ) 𝑓’(π‘₯) = (2^(π‘₯ + 1).γ€– log〗⁑2)/(1 + (2^π‘₯ )^2 ) 𝑓’(π‘₯) = (2^(π‘₯ + 1).γ€– log〗⁑2)/(1 + (2^2 )^π‘₯ ) 𝒇’(𝒙) = (𝟐^(𝒙 + 𝟏).γ€– π’π’π’ˆγ€—β‘πŸ)/(𝟏 + πŸ’^𝒙 )

About the Author

Davneet Singh's photo - Teacher, Computer Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 9 years. He provides courses for Maths and Science at Teachoo.