Example 23 - Differentiate sin (cos (x^2)) - Teachoo - Examples


Transcript

Question 2 Differentiate sin ⁑(cos ⁑(π‘₯2)) with respect to π‘₯ .Let 𝑦 = " " sin ⁑(cos ⁑π‘₯2) We need to find derivative of 𝑦 𝑀.π‘Ÿ.𝑑.π‘₯ i.e. 𝑦^β€² = (𝑠𝑖𝑛⁑〖 (cos⁑〖π‘₯^2 γ€— )γ€— ) 𝑑𝑦/𝑑π‘₯ = 𝑑(𝑠𝑖𝑛⁑〖 (cos⁑〖π‘₯^2 γ€— )γ€— )/𝑑π‘₯ = cos (cos⁑〖π‘₯^2 γ€— ) . 𝑑(cos⁑〖π‘₯^2 γ€— )/𝑑π‘₯ = cos (cos⁑〖π‘₯^2 γ€— ). (βˆ’sin⁑〖π‘₯^2 γ€— ) . 𝑑(π‘₯^2 )/𝑑π‘₯ = cos (cos⁑〖π‘₯^2 γ€— ). (βˆ’sin⁑〖π‘₯^2 γ€— ) . 2π‘₯ = βˆ’ 2x sin 𝒙^𝟐. cos (cos 𝒙^𝟐)

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.