Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12








Last updated at Jan. 3, 2020 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Example 33 Find ๐๐ฆ/๐๐ฅ , if ๐ฆ^๐ฅ+๐ฅ^๐ฆ+๐ฅ^๐ฅ=๐^๐. Let u = ๐ฆ๐ฅ, v = ๐ฅ๐ฆ & w = ๐ฅ^๐ฅ Now, ๐ข + ๐ฃ + ๐ค = ๐^๐ Differentiating ๐ค.๐.๐ก.๐ฅ (๐ (๐ข + ๐ฃ + ๐ค))/๐๐ฅ = (๐(๐^๐))/๐๐ฅ (๐(๐ข))/๐๐ฅ + (๐(๐ฃ))/๐๐ฅ + (๐(๐ค))/๐๐ฅ = 0 We will calculate derivative of u, v & w separately . (As ๐^๐ is constant) โฆ(1) Finding Derivative of ๐ . ๐ข = ๐ฆ^๐ฅ Taking log both sides logโก๐ข=logโกใ (๐ฆ^๐ฅ)" " ใ logโก๐ข=ใ๐ฅ . logใโก๐ฆ" " Differentiating both sides ๐ค.๐.๐ก.๐ฅ (๐(logโก๐ข))/๐๐ฅ = (๐(๐ฅ . logโก๐ฆ))/๐๐ฅ (๐(logโก๐ข))/๐๐ฅ (๐๐ข/๐๐ข) = ๐(๐ฅ.logโก๐ฆ )/๐๐ฅ 1/๐ข . ๐๐ข/๐๐ฅ = (๐ (๐ฅ . logโก๐ฆ ))/๐๐ฅ (๐ด๐ logโกใ(๐^๐)ใ=๐ logโก๐) By product Rule (uv)โ = uโv + vโu 1/๐ข . ๐๐ข/๐๐ฅ = (๐ (๐ฅ))/๐๐ฅ . logโก๐ฆ + (๐(logโก๐ฆ))/๐ . ๐ฅ 1/๐ข . ๐๐ข/๐๐ฅ = (๐ (๐ฅ))/๐๐ฅ . logโก๐ฆ + (๐(logโก๐ฆ))/๐ . ๐ฅ 1/๐ข . ๐๐ข/๐๐ฅ = 1 . logโก๐ฆ + ๐ฅ. ๐(logโก๐ฆ )/๐๐ฅ . ๐๐ฆ/๐๐ฆ 1/๐ข . ๐๐ข/๐๐ฅ = logโก๐ฆ + ๐ฅ. ๐(logโก๐ฆ )/๐๐ฅ . ๐๐ฆ/๐๐ฅ 1/๐ข . ๐๐ข/๐๐ฅ = logโก๐ฆ + ๐ฅ. 1/๐ฆ . ๐๐ฆ/๐๐ฅ 1/๐ข . ๐๐ข/๐๐ฅ = logโก๐ฆ + ๐ฅ/๐ฆ . ๐๐ฆ/๐๐ฅ ๐๐ข/๐๐ฅ = ๐ข (logโก๐ฆ "+ " ๐ฅ/๐ฆ " " ๐๐ฆ/๐๐ฅ) ๐๐ข/๐๐ฅ = ๐ฆ^๐ฅ (logโก๐ฆ "+ " ๐ฅ/๐ฆ " " ๐๐ฆ/๐๐ฅ) Finding derivative of v v = xy Taking log both sides logโก๐ฃ=logโกใ (๐ฅ^๐ฆ)" " ใ logโก๐ฃ=ใ๐ฆ. logใโก๐ฅ" " Differentiating both sides ๐ค.๐.๐ก.๐ฅ (๐(logโก๐ฃ))/๐๐ฅ = (๐(๐ฆ . logโก๐ฅ))/๐๐ฅ (๐(logโก๐ฃ))/๐๐ฅ (๐๐ฃ/๐๐ฅ) = ๐(ใ๐ฆ logใโก๐ฅ )/๐๐ฅ 1/๐ฃ (๐๐ฃ/๐๐ฅ) = ( ๐(ใ๐ฆ logใโก๐ฅ ))/๐๐ฅ โฆ(1) By product Rule (uv)โ = uโv + vโu 1/๐ฃ (๐๐ฃ/๐๐ฅ) = ( ๐(๐ฆ))/๐๐ฅ . logโก๐ฅ + (๐ (logโก๐ฅ))/๐๐ฅ . ๐ฆ 1/๐ฃ (๐๐ฃ/๐๐ฅ) = ( ๐(๐ฆ))/๐๐ฅ . logโก๐ฅ + (๐ (logโก๐ฅ))/๐๐ฅ . ๐ฆ 1/๐ฃ (๐๐ฃ/๐๐ฅ) = ( ๐๐ฆ)/๐๐ฅ . logโก๐ฅ + 1/๐ฅ . ๐ฆ 1/๐ฃ (๐๐ฃ/๐๐ฅ) = ( ๐๐ฆ)/๐๐ฅ logโก๐ฅ + ๐ฆ/๐ฅ ๐๐ฃ/๐๐ฅ = v (log ( ๐๐ฆ)/๐๐ฅ ๐ฅ+๐ฆ/๐ฅ) Putting values of ๐ฃ = ๐ฅ^๐ฆ ๐๐ฃ/๐๐ฅ = ๐ฅ^๐ฆ (๐๐ฆ/๐๐ฅ logโกใ๐ฅ+ ๐ฆ/๐ฅใ ) โฆ(3) Calculating derivative of ๐ ๐ค = ๐ฅ^๐ฅ Taking log both sides logโก๐ค=logโกใ (๐ฅ^๐ฅ)" " ใ logโก๐ค=ใ๐ฅ. logใโก๐ฅ" " logโก๐ค=ใ๐ฅ. logใโก๐ฅ" " Differentiating both sides ๐ค.๐.๐ก.๐ฅ (๐(logโก๐ค))/๐๐ฅ = (๐(๐ฅ . logโก๐ฅ))/๐๐ฅ (๐(logโก๐ค))/๐๐ฅ (๐๐ค/๐๐ค) = ๐(๐ฅ logโก๐ฅ )/๐๐ฅ (๐(logโก๐ค))/๐๐ค . ๐๐ค/๐๐ฅ = ๐(๐ฅ logโก๐ฅ )/๐๐ฅ (๐ด๐ logโกใ(๐^๐)ใ=๐ logโก๐) 1/๐ค . ๐๐ค/๐๐ฅ = ๐(๐ฅ logโก๐ฅ )/๐๐ฅ logโก๐ค=ใ๐ฅ. logใโก๐ฅ" " Differentiating both sides ๐ค.๐.๐ก.๐ฅ (๐(logโก๐ค))/๐๐ฅ = (๐(๐ฅ . logโก๐ฅ))/๐๐ฅ (๐(logโก๐ค))/๐๐ฅ (๐๐ค/๐๐ค) = ๐(๐ฅ logโก๐ฅ )/๐๐ฅ (๐(logโก๐ค))/๐๐ค . ๐๐ค/๐๐ฅ = ๐(๐ฅ logโก๐ฅ )/๐๐ฅ 1/๐ค . ๐๐ค/๐๐ฅ = ๐(๐ฅ logโก๐ฅ )/๐๐ฅ By product Rule (uv)โ = uโv + vโu 1/๐ค (๐๐ค/๐๐ฅ) = ( ๐(๐ฅ))/๐๐ฅ . logโก๐ฅ + (๐ (logโก๐ฅ))/๐๐ฅ . ๐ฅ 1/๐ค (๐๐ค/๐๐ฅ) = 1 . logโก๐ฅ + 1/๐ฅ . ๐ฅ 1/๐ค (๐๐ค/๐๐ฅ) = (logโกใ๐ฅ+1ใ) ๐๐ค/๐๐ฅ = ๐ค(logโกใ๐ฅ+1ใ) ๐๐ค/๐๐ฅ = ๐ฅ^๐ฅ (logโกใ๐ฅ+1ใ ) From (1) ๐๐ข/๐๐ฅ + ๐๐ฃ/๐๐ฅ + ๐๐ค/๐๐ฅ = 0 Putting values from (2), (3) & (4) (๐ฆ^๐ฅ logโกใ๐ฆ+๐ฆ^(๐ฅโ1). ๐ฅ ๐๐ฆ/๐๐ฅ ใ ) + (๐ฅ^๐ฆ logโกใ๐ฅ.๐๐ฆ/๐๐ฅ+๐ฅ^๐ฆ.๐ฆ/๐ฅ ใ ) + (๐ฅ^๐ฅ (logโกใ๐ฅ+1ใ))=0 โฆ(4) (๐ฆ^๐ฅ logโกใ๐ฆ+๐ฅ^๐ฆ. ๐ฆ/๐ฅ+๐ฅ^๐ฅ (logโกใ๐ฅ+1ใ)ใ ) + (๐ฆ^(๐ฅโ1) .โกใ๐ฅ ๐๐ฆ/๐๐ฅ+๐ฅ^๐ฆ logโกใ๐ฅ ๐๐ฆ/๐๐ฅใ ใ ) = 0 (๐ฆ^(๐ฅโ1) .โกใ๐ฅ ๐๐ฆ/๐๐ฅ+๐ฅ^๐ฆ logโกใ๐ฆ ๐๐ฆ/๐๐ฅใ ใ ) = โ (๐ฆ^๐ฅ logโกใ๐ฆ+๐ฅ^๐ฆ. ๐ฆ/๐ฅ+๐ฅ^๐ฅ (logโกใ๐ฅ+1ใ)ใ ) (๐ฆ^(๐ฅโ1) .โกใ๐ฅ +๐ฅ^๐ฆ logโกใ๐ฅ ใ ใ ) ๐๐ฆ/๐๐ฅ = โ (๐ฆ^๐ฅ logโกใ๐ฆ+๐ฅ^๐ฆ. ๐ฆ/๐ฅ+๐ฅ^๐ฅ (logโกใ๐ฅ+1ใ)ใ ) ๐๐ฆ/๐๐ฅ = "โ" (๐ฆ^๐ฅ ๐๐๐โกใ๐ฆ + ๐ฅ^๐ฆ. ๐ฆ/๐ฅ + ๐ฅ^๐ฅ (1 + ๐๐๐โก๐ฅ)ใ )/((ใ๐ฅ๐ฆใ^(๐ฅโ1) +โกใ๐ฅ^๐ฆ ๐๐๐โกใ๐ฅ ใ ใ)) ๐ ๐/๐ ๐ = "โ" (๐^๐ ๐๐๐โกใ๐ + ๐^(๐ โ ๐) ๐ + ๐^๐ (๐ + ๐๐๐โก๐)ใ )/((ใ๐๐ใ^(๐โ๐) +โกใ๐^๐ ๐๐๐โกใ๐ ใ ใ))
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17 Important
Example 18
Example 19
Example 20 Important
Example 21
Example 22
Example 23
Example 24
Example 25
Example 26 Important
Example 27
Example 28
Example 29 Important
Example 30 Important
Example 31
Example 32 Important
Example 33 Important You are here
Example 34
Example 35
Example 36 Important
Example 37 Important
Example 38
Example 39
Example 40
Example 41
Example 42 Important Not in Syllabus - CBSE Exams 2021
Example 43 Not in Syllabus - CBSE Exams 2021
Example 44 Important
Example 45 Important
Example 46
Example 47 Important
Example 48
About the Author