Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12


Last updated at Jan. 3, 2020 by Teachoo
Check Full Chapter Explained - Continuity and Differentiability - Continuity and Differentiability Class 12
Transcript
Example 17 Discuss the continuity of sine function.Let π(π₯)=sinβ‘π₯ Letβs check continuity of f(x) at any real number Let c be any real number. We know that A function is continuous at π₯ = π if L.H.L = R.H.L = π(π) i.e. limβ¬(xβπ^β ) π(π₯)= limβ¬(xβπ^+ ) " " π(π₯)= π(π) LHL at x β c limβ¬(xβπ^β ) f(x) = limβ¬(hβ0) f(c β h) = (πππ)β¬(ββ0) sinβ‘γ(πγββ) = (πππ)β¬(ββ0) (sinβ‘π cosβ‘β "β cos c sin h " ) = (sinβ‘π cosβ‘0 "β cos c sin 0" ) = sinβ‘πΓ1"β cos c" Γ0 = sin c sinβ‘(π₯βπ¦) =sinβ‘π₯ cosβ‘π¦βcosβ‘π₯ sinβ‘π¦ π΄π , cosβ‘0=1 & sinβ‘0=0 RHL at x β c limβ¬(xβπ^+ ) f(x) = limβ¬(hβ0) f(c + h) = (πππ)β¬(ββ0) sinβ‘γ(πγ+β) = (πππ)β¬(ββ0) (sinβ‘π cosβ‘β "+ cos c sin h " ) = (sinβ‘π cosβ‘0 "+ cos c sin 0" ) = sinβ‘πΓ1" + cos c" Γ0 = sin c sinβ‘(π₯+π¦) =sinβ‘π₯ cosβ‘π¦+cosβ‘π₯ sinβ‘π¦ π΄π , cosβ‘0=1 & sinβ‘0=0 And, π(π₯) = sinβ‘π₯ π(π) = sinβ‘π Hence, L.H.L = R.H.L = π(π) Therefore, π(π₯) is continuous for all real number So, πππβ‘π is continuous.
Examples
Example 2
Example 3
Example 4 Important
Example 5
Example 6
Example 7
Example 8
Example 9
Example 10
Example 11
Example 12
Example 13
Example 14
Example 15
Example 16
Example 17 Important You are here
Example 18
Example 19
Example 20 Important
Example 21
Example 22
Example 23
Example 24
Example 25
Example 26 Important
Example 27
Example 28
Example 29 Important
Example 30 Important
Example 31
Example 32 Important
Example 33 Important
Example 34
Example 35
Example 36 Important
Example 37 Important
Example 38
Example 39
Example 40
Example 41
Example 42 Important Not in Syllabus - CBSE Exams 2021
Example 43 Not in Syllabus - CBSE Exams 2021
Example 44 Important
Example 45 Important
Example 46
Example 47 Important
Example 48
About the Author