Examples

Chapter 5 Class 12 Continuity and Differentiability
Serial order wise

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

### Transcript

Example 44 Differentiate w.r.t. x, the following function: (ii) π^(sec^2β‘π₯ ) + 3cos^(β1) π₯ Let y = π^(sec^2β‘π₯ ) + 3cos^(β1) π₯ Differentiating π€.π.π‘.π₯ ππ¦/ππ₯ = π(π^(sec^2β‘π₯ )+ 3cos^(β1) π₯" " )/ππ₯ ππ¦/ππ₯ = π(π^(sec^2β‘π₯ ) )/ππ₯ + π(πγπππγ^(βπ) π)/ππ ππ¦/ππ₯ = π^(sec^2β‘π₯ ) π(sec^2β‘π₯ )/ππ₯ + 3. ((βπ)/β(π βπ^π )) ππ¦/ππ₯ = π^(sec^2β‘π₯ ). 2 sec π₯ . π(γπππ γβ‘π )/ππ β 3/β(1 βπ₯^2 ) "As" π(π^π₯ )/ππ₯=π^π₯ & π(γπππ γ^(β1)β‘π₯ )/ππ₯=(β1)/β(1 βγ π₯γ^2 ) ππ¦/ππ₯ = π^(sec^2β‘π₯ ). 2 sec π₯ . πππβ‘π .πππβ‘π β 3/β(1 β π₯^2 ) ππ/ππ = γπ πγ^(γπππγ^πβ‘π ). γπππγ^π π .πππβ‘π β π/β(π β π^π )