Example 38 - If y = sin-1 x, show that (1 - x2) d2y/dx2 - x dy/dx = 0 - Examples

part 2 - Example 38 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Ā  part 3 - Example 38 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

part 4 - Example 38 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability
part 5 - Example 38 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Example 38 (Method 1) If y = ć€–š‘ š‘–š‘›ć€—^(āˆ’1) š‘„, show that (1 – š‘„2) š‘‘2š‘¦/š‘‘š‘„2 āˆ’ š‘„ š‘‘š‘¦/š‘‘š‘„ = 0 . We have š‘¦ = ć€–š‘ š‘–š‘›ć€—^(āˆ’1) š‘„ Differentiating š‘¤.š‘Ÿ.š‘”.š‘„ š‘‘š‘¦/š‘‘š‘„ = š‘‘(ć€–š‘ š‘–š‘›ć€—^(āˆ’1) š‘„)/š‘‘š‘„ š‘‘š‘¦/š‘‘š‘„ = 1/√(怖1 āˆ’ š‘„ć€—^2 ) √((šŸāˆ’š’™^šŸ ) ) š’š^′ = šŸ Squaring both sides ("As " š‘‘(ć€–š‘ š‘–š‘›ć€—^(āˆ’1) š‘„)/š‘‘š‘„ " = " 1/√(怖1 āˆ’ š‘„ć€—^2 )) (√((1āˆ’š‘„^2 ) ) š‘¦^′ )^2 = 1^2 (1āˆ’š‘„^2 )(š‘¦^′ )^2 = 1 Again Differentiating š‘¤.š‘Ÿ.š‘”.š‘„ š‘‘/š‘‘š‘„ ((1āˆ’š‘„^2 )(š‘¦^′ )^2 ) = (š‘‘(1))/š‘‘š‘„ d(1 āˆ’ x^2 )/š‘‘š‘„ (š‘¦^′ )^2+(1āˆ’š‘„^2 ) š‘‘((š‘¦^′ )^2 )/š‘‘š‘„ = 0 āˆ’2š‘„(š‘¦^′ )^2+(1āˆ’š‘„^2 ) 2š‘¦^′ Ɨ š‘¦^′′ = 0 怖2y怗^′ [āˆ’š’™š’š^′+(šŸāˆ’š’™^šŸ ) š’š^′′ ] = 0 āˆ’š‘„š‘¦^′+(1āˆ’š‘„^2 ) š‘¦^′′=0 (ć€–šŸāˆ’š’™ć€—^šŸ ) (š’…^šŸ š’š)/ć€–š’…š’™ć€—^šŸ āˆ’ š’™ . š’…š’š/š’…š’™ = 0 Example 38 (Method 2) If y = ć€–š‘ š‘–š‘›ć€—^(āˆ’1) š‘„, show that (1 – š‘„2) š‘‘2š‘¦/š‘‘š‘„2 āˆ’ š‘„ š‘‘š‘¦/š‘‘š‘„ = 0 . We have š‘¦ = ć€–š‘ š‘–š‘›ć€—^(āˆ’1) š‘„ Differentiating š‘¤.š‘Ÿ.š‘”.š‘„ š‘‘š‘¦/š‘‘š‘„ = š‘‘(ć€–š‘ š‘–š‘›ć€—^(āˆ’1) š‘„)/š‘‘š‘„ š‘‘š‘¦/š‘‘š‘„ = 1/√(怖1 āˆ’ š‘„ć€—^2 ) š’…š’š/š’…š’™ = (ć€–šŸāˆ’š’™ć€—^šŸ )^((āˆ’šŸ)/( šŸ)) ("As " š‘‘(ć€–š‘ š‘–š‘›ć€—^(āˆ’1) š‘„)/š‘‘š‘„ " = " 1/√(怖1 āˆ’ š‘„ć€—^2 )) Again Differentiating š‘¤.š‘Ÿ.š‘”.š‘„ š‘‘/š‘‘š‘„ (š‘‘š‘¦/š‘‘š‘„) = (š‘‘(怖1 āˆ’ š‘„ć€—^2 )^((āˆ’1)/( 2)))/š‘‘š‘„ (š‘‘^2 š‘¦)/ć€–š‘‘š‘„ć€—^2 = (āˆ’1)/( 2) (怖1āˆ’š‘„ć€—^2 )^((āˆ’1)/( 2) āˆ’1) . š‘‘(怖1 āˆ’ š‘„ć€—^2 )/š‘‘š‘„ (š‘‘^2 š‘¦)/ć€–š‘‘š‘„ć€—^2 = (āˆ’1)/( 2) (怖1āˆ’š‘„ć€—^2 )^((āˆ’3)/2 ). (0āˆ’2š‘„) (š‘‘^2 š‘¦)/ć€–š‘‘š‘„ć€—^2 = (āˆ’1)/( 2) (怖1āˆ’š‘„ć€—^2 )^((āˆ’3)/2 ). (āˆ’2š‘„) (š’…^šŸ š’š)/ć€–š’…š’™ć€—^šŸ = š’™(ć€–šŸāˆ’š’™ć€—^šŸ )^((āˆ’šŸ‘)/šŸ ) Now, We need to prove (怖1āˆ’š‘„ć€—^2 ) (š‘‘^2 š‘¦)/ć€–š‘‘š‘„ć€—^2 āˆ’ š‘„ . š‘‘š‘¦/š‘‘š‘„ = 0 Solving LHS (怖1āˆ’š‘„ć€—^2 ) (š‘‘^2 š‘¦)/ć€–š‘‘š‘„ć€—^2 āˆ’ š‘„ . š‘‘š‘¦/š‘‘š‘„ = (怖1āˆ’š‘„ć€—^2 ) . (š‘„ć€– (怖1āˆ’š‘„ć€—^2 )怗^((āˆ’3)/2 ) ) āˆ’ š‘„ (怖1āˆ’š‘„ć€—^2 )^((āˆ’1)/( 2)) = š‘„ć€– (怖1āˆ’š‘„ć€—^2 )怗^(šŸ + ((āˆ’šŸ‘)/šŸ) )āˆ’š‘„ (怖1āˆ’š‘„ć€—^2 )^((āˆ’1)/( 2)) = š‘„ć€– (怖1āˆ’š‘„ć€—^2 )怗^((āˆ’1)/( 2))āˆ’š‘„ (怖1āˆ’š‘„ć€—^2 )^((āˆ’1)/( 2)) = 0 = RHS Hence proved

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo