Example 35 - Find d2y/dx2, if y = x3 + tan x - Chapter 5 - Examples

part 2 - Example 35 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Example 35 Find 𝑑2𝑦/𝑑π‘₯2 , if 𝑦 = π‘₯3+tan⁑π‘₯. 𝑦 = π‘₯3+tan⁑π‘₯ Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑑𝑦/𝑑π‘₯ = (𝑑(π‘₯^3+ tan⁑〖π‘₯)γ€—)/𝑑π‘₯ 𝑑𝑦/𝑑π‘₯ = (𝑑(π‘₯^3))/𝑑π‘₯ + (𝑑(tan⁑〖π‘₯)γ€—)/𝑑π‘₯ π’…π’š/𝒅𝒙 = πŸ‘π’™πŸ+π’”π’†π’„πŸ 𝒙 Again Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (𝑑 (3π‘₯2 +sec^2⁑π‘₯))/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = (𝑑 (3π‘₯2))/𝑑π‘₯ + (𝑑 (sec2 π‘₯))/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = 6π‘₯+2 sec⁑π‘₯ . (𝑑(sec⁑〖π‘₯)γ€—)/𝑑π‘₯ (𝑑^2 𝑦)/〖𝑑π‘₯γ€—^2 = 6π‘₯+2 sec⁑π‘₯.sec⁑〖π‘₯ tan⁑π‘₯ γ€— γ€–π’…π’šγ€—^𝟐/〖𝒅𝒙〗^𝟐 = πŸ”π’™+𝟐 〖𝒔𝒆𝒄〗^πŸβ‘π’™ . π­πšπ§β‘π’™

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo