Example 19 - Show that f(x) = sin (x2) is continuous - Examples - Examples

part 2 - Example 19 - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Example 19 Show that the function defined by f (x) = sin (x2) is a continuous function.Given 𝑓(π‘₯) = sin⁑(π‘₯^2 ) Let π’ˆ(𝒙) = sin⁑π‘₯ & 𝒉(𝒙) = π‘₯^2 Now, (π’ˆ 𝒐 𝒉)(𝒙) = g(β„Ž(π‘₯)) = 𝑔(π‘₯^2 ) = sin⁑(π‘₯^2 ) = 𝒇(𝒙) So, we can write 𝑓(π‘₯) = π‘”π‘œβ„Ž Here, 𝑔(π‘₯) = sin⁑π‘₯ is continuous & β„Ž(π‘₯) = π‘₯^2 is continuous being a polynomial . We know that if two function 𝑔 & β„Ž are continuous then their composition π’ˆπ’π’‰ is continuous Hence, π‘”π‘œβ„Ž(π‘₯) is continuous ∴ 𝒇(𝒙) is continuous .

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo