Example 40 (ii) - Differentiate tan^-1 (sin x/ (1 + cos x)) - Teachoo - Examples

part 2 - Example 40 (ii) - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

part 3 - Example 40 (ii) - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

part 4 - Example 40 (ii) - Examples - Serial order wise - Chapter 5 Class 12 Continuity and Differentiability

Share on WhatsApp

Transcript

Example 40 (Method 1) Differentiate the following w.r.t. x. (ii) tan βˆ’1 (sin⁑π‘₯/( 1 +γ€– cos〗⁑〖π‘₯ γ€— )) Let 𝑓(π‘₯) = tan βˆ’1 (π’”π’Šπ’β‘π’™/( 1 +γ€– 𝒄𝒐𝒔〗⁑〖𝒙 γ€— )) 𝑓(π‘₯) = tan βˆ’1 ((𝟐 〖𝐬𝐒𝐧 〗⁑〖𝒙/πŸγ€— γ€– 𝐜𝐨𝐬 〗⁑〖𝒙/πŸγ€—)/( 1+ (𝟐 γ€–πœπ¨π¬γ€—^πŸβ‘γ€– 𝒙/πŸγ€— βˆ’ 𝟏))) = tan βˆ’1 ((2 γ€–sin 〗⁑〖π‘₯/2γ€— γ€– cos 〗⁑〖π‘₯/2 γ€—)/( 2 cos^2⁑〖 π‘₯/2γ€— )) = tan βˆ’1 ((2 γ€–sin 〗⁑〖π‘₯/2γ€—)/( 2 cos⁑〖π‘₯/2γ€— )) We know that sin 2ΞΈ = 2 sin ΞΈ cos ΞΈ Replacing ΞΈ by πœƒ/2 sin ΞΈ = 2 π’”π’Šπ’β‘γ€–πœ½/πŸγ€— π’„π’π’”β‘γ€–πœ½/πŸγ€— and cos 2ΞΈ = 2cos2 ΞΈ – 1 Replacing ΞΈ by πœƒ/2 cos ΞΈ = 2cos2 𝜽/𝟐 – 1 = tan βˆ’1 (γ€–sin 〗⁑〖π‘₯/2γ€—/( cos⁑〖 π‘₯/2γ€— )) = tan βˆ’1 (γ€–tan 〗⁑〖π‘₯/2γ€— ) = 𝒙/𝟐 𝒇(𝒙) = 𝒙/𝟐 Differentiating 𝑀.π‘Ÿ.𝑑.π‘₯ 𝑓’(π‘₯) = 1/2 (𝑑(π‘₯))/𝑑π‘₯ 𝒇’(𝒙) = 𝟏/𝟐 (As tan^(βˆ’1)⁑〖(tanβ‘πœƒ)γ€— =πœƒ) Example 40 (Method 2) Differentiate the following w.r.t. x. (ii) tan βˆ’1 (sin⁑π‘₯/( 1 +γ€– cos〗⁑〖π‘₯ γ€— )) Let 𝑓(π‘₯) = tan βˆ’1 (π’”π’Šπ’β‘π’™/( 1 +γ€– 𝒄𝒐𝒔〗⁑〖𝒙 γ€— )) Differentiating w.r.t x 𝑓^β€² (π‘₯) = 1/(1 + (π’”π’Šπ’β‘π’™/( 1 +γ€– 𝒄𝒐𝒔〗⁑〖𝒙 γ€— ))^2 ) (π’”π’Šπ’β‘π’™/( 1 +γ€– 𝒄𝒐𝒔〗⁑〖𝒙 γ€— ))^β€² = 1/(((1 + cos⁑π‘₯ )^2 + sin^2⁑π‘₯)/(1 + cos⁑π‘₯ )^2 ) (((π’”π’Šπ’β‘π’™ )^β€² (𝟏 + 𝒄𝒐𝒔 𝒙)βˆ’(𝟏 + 𝒄𝒐𝒔 𝒙)^β€² π’”π’Šπ’ 𝒙)/( (1 +γ€– 𝒄𝒐𝒔〗⁑𝒙 )^𝟐 )) = (1 + cos⁑π‘₯ )^2/((1 + cos⁑π‘₯ )^2 + sin^2⁑π‘₯ ) ((𝒄𝒐𝒔 𝒙(𝟏 + 𝒄𝒐𝒔 𝒙). βˆ’ (βˆ’ π’”π’Šπ’ 𝒙)π’”π’Šπ’ 𝒙)/( (1 +γ€– 𝒄𝒐𝒔〗⁑𝒙 )^𝟐 ))= (π‘π‘œπ‘  π‘₯ + 𝒄𝒐𝒔^𝟐 𝒙 + π’”π’Šπ’^𝟐 𝒙)/(1 + γ€–πœπ¨π¬γ€—^πŸβ‘π’™ + 2 cos⁑π‘₯ + γ€–π’”π’Šπ’γ€—^πŸβ‘π’™ ) = (𝒄𝒐𝒔 𝒙 +𝟏)/(1 + 1 + 2 cos⁑π‘₯ ) = (𝒄𝒐𝒔 𝒙 + 𝟏)/(2 + 2 cos⁑π‘₯ ) = (1 + 𝒄𝒐𝒔 𝒙)/(2(1 + cos⁑π‘₯) ) = 1/2

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo