Check sibling questions


Transcript

Question 3 Evaluate ∫_0^1▒𝑒^(2 −3𝑥)⁡𝑑𝑥 as a limit of a sum . I=∫_0^1▒𝑒^(2 −3𝑥)⁡𝑑𝑥 I=∫_0^1▒〖𝑒^2 . 𝑒^(−3𝑥)〗⁡𝑑𝑥 I=𝑒^2 ∫_0^1▒𝑒^(−3𝑥)⁡𝑑𝑥 Solving I1 separately ∫_0^1▒𝑒^(−3𝑥) 𝑑𝑥 Putting 𝑎 = 0 𝑏 =1 ℎ = (𝑏 − 𝑎)/𝑛 = (1 − 0)/𝑛 = 1/𝑛 𝑓(𝑥)=𝑒^(−3𝑥) We know that ∫1_𝑎^𝑏▒〖𝑥 𝑑𝑥〗 =(𝑏−𝑎) (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 (𝑓(𝑎)+𝑓(𝑎+ℎ)+𝑓(𝑎+2ℎ)…+𝑓(𝑎+(𝑛−1)ℎ)) Hence we can write ∫_0^1▒𝑒^(−3𝑥) 𝑑𝑥 =(1−0) lim┬(n→∞) 1/𝑛 (𝑓(0)+𝑓(0+ℎ)+𝑓(0+2ℎ)+… +𝑓(0+(𝑛−1)ℎ) =lim┬(n→∞) 1/𝑛 (𝑓(0)+𝑓(ℎ)+𝑓(2ℎ)……+𝑓((𝑛−1)ℎ) Here, 𝑓(𝑥)=𝑒^(−3𝑥) 𝑓(0)=𝑒^(−3(0))=1 𝑓(ℎ)=𝑒^(−3ℎ) 𝑓(2ℎ)=𝑒^(−3(2ℎ))=𝑒^(−6ℎ) 𝑓((𝑛−1)ℎ)=𝑒^(−3(𝑛−1)ℎ) Hence, our equation becomes ∫_0^1▒𝑒^(−3𝑥) 𝑑𝑥 =lim┬(n→∞) 1/𝑛 (𝑓(0)+𝑓(ℎ)+𝑓(2ℎ)……+𝑓(𝑛−1)ℎ) = lim┬(n→∞) 1/𝑛 (1+𝑒^(−3ℎ)+𝑒^(−6ℎ)+ ……+𝑒^(−3(𝑛 − 1) ℎ) ) Let S = 1+𝑒^(−3ℎ)+𝑒^(−6ℎ)+ ……+𝑒^(−3(𝑛 − 1) ℎ) It is a G.P. with common ratio (r) r = 𝑒^(−3ℎ)/1 = 𝑒^(−3ℎ) We know Sum of G.P = a((𝑟^𝑛 − 1)/(𝑟 − 1)) Replacing a by 1 and r by 𝑒^(−3ℎ) , we get S = 1(((𝑒^(−3ℎ) )^𝑛 − 1)/(𝑒^(−3ℎ) − 1))= (𝑒^(−3𝑛ℎ) − 1)/(𝑒^(−3ℎ) − 1) Thus ∴ ∫_0^1▒𝑒^(−3𝑥) 𝑑𝑥 =lim┬(n→∞) 1/𝑛 (1+𝑒^(−3ℎ)+𝑒^(−6ℎ)+ …+𝑒^(−3(𝑛 − 1) ℎ) ) Putting the value of S, we get =lim┬(n→∞) 1/𝑛 ((𝑒^(−3𝑛ℎ) − 1)/(𝑒^(−3ℎ) − 1)) = (𝑙𝑖𝑚)┬(𝑛→∞) 1/𝑛 ((𝑒^(−3𝑛ℎ) − 1)/(−3ℎ . (𝑒^(−3ℎ) − 1)/(−3ℎ))) = (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3𝑛ℎ) − 1)/(−3𝑛ℎ) . 1/( (𝑒^(−3ℎ) − 1)/(−3ℎ)) = (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3𝑛ℎ) − 1)/(−3𝑛ℎ) . (𝑙𝑖𝑚)┬(𝑛→∞) 1/( (𝑒^(−3ℎ) − 1)/(−3ℎ)) Solving (𝐥𝐢𝐦)┬(𝐧→∞) ( 𝟏)/(( 𝒆^(−𝟑𝒉) − 𝟏)/(−𝟑𝒉)) As n→∞ ⇒ 1/ℎ →∞ ⇒ ℎ →0 ∴ lim┬(n→∞) ( 1)/(( 𝑒^(−3ℎ) − 1)/(−3ℎ)) = lim┬(h→0) ( 1)/(( 𝑒^(−3ℎ) − 1)/(−3ℎ)) = 1/1 = 1 Thus, our equation becomes ∫1_0^1▒〖𝑒^(−3𝑥) 𝑑𝑥〗 =(𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3𝑛ℎ) − 1)/(−3𝑛ℎ).(𝑙𝑖𝑚)┬(𝑛→∞) 1/( (𝑒^(−3ℎ) − 1)/(−3ℎ)) = (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3𝑛ℎ) − 1)/(−3𝑛ℎ). 1 = (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3𝑛 . 1/𝑛) − 1)/(−3𝑛 (1/𝑛) ) = (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3) − 1)/(−3) = 1/1 = 1 Thus, our equation becomes ∫1_0^1▒〖𝑒^(−3𝑥) 𝑑𝑥〗 =(𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3𝑛ℎ) − 1)/(−3𝑛ℎ).(𝑙𝑖𝑚)┬(𝑛→∞) 1/( (𝑒^(−3ℎ) − 1)/(−3ℎ)) = (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3𝑛ℎ) − 1)/(−3𝑛ℎ). 1 = (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3𝑛 . 1/𝑛) − 1)/(−3𝑛 (1/𝑛) ) = (𝑙𝑖𝑚)┬(𝑛→∞) (𝑒^(−3) − 1)/(−3) = (𝑒^(−3) − 1)/(−3) = (1 − 𝑒^(−3))/3 = (1 − 1/𝑒^3 )/3 = (𝑒^3 − 1)/(3𝑒^3 ) Putting the values of I1 in (1) I=𝑒^2×1/3 [(𝑒^3 − 1)/𝑒^3 ] I1=1/3 [(𝑒^3 − 1)/𝑒] 𝐈=𝟏/𝟑 [𝒆^𝟐− 𝟏/𝒆]

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo