Check sibling questions

 


Transcript

Misc 24 Evaluate the definite integral ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’sin⁑π‘₯)/(1 βˆ’cos⁑π‘₯ )) 𝑑π‘₯γ€— ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’ sin⁑π‘₯)/(1 βˆ’γ€– cos〗⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 )/(1 βˆ’ cos⁑π‘₯ )βˆ’sin⁑π‘₯/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ )+(1 )/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— Let f(x) = (βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ ) f’(x) = βˆ’[(cos⁑π‘₯ (1 βˆ’ cos⁑〖π‘₯) βˆ’ (sin⁑〖π‘₯) (sin⁑〖π‘₯)γ€— γ€— γ€—)/((1 βˆ’ γ€–cos⁑π‘₯)γ€—^2 )] =βˆ’[(cos⁑〖π‘₯ βˆ’γ€— γ€–π‘π‘œπ‘ γ€—^2 π‘₯ βˆ’ 〖𝑠𝑖𝑛〗^2 π‘₯)/((1 βˆ’ γ€–cos π‘₯⁑)γ€—^2 )] = βˆ’(cos⁑〖π‘₯ βˆ’ (γ€–π‘π‘œπ‘ γ€—^2 π‘₯ + 〖𝑠𝑖𝑛〗^2 π‘₯)γ€—/((1 βˆ’ γ€–π‘π‘œπ‘  π‘₯⁑)γ€—^2 )) = βˆ’ (cos⁑〖π‘₯ βˆ’ 1γ€—/γ€–(1 βˆ’γ€– cos〗⁑〖π‘₯)γ€—γ€—^2 ) = ( 1 βˆ’ cos⁑〖π‘₯ γ€—)/γ€–(1 βˆ’ cos⁑〖π‘₯)γ€—γ€—^2 = 1/(1 βˆ’ cos⁑π‘₯ ) Hence, the given integration is of form, ∫1▒〖𝑒^π‘₯ (𝑓(π‘₯)+𝑓^β€² (π‘₯)) 𝑑π‘₯γ€—= 𝑒^π‘₯ 𝑓(π‘₯) Where f(x) = (βˆ’sin⁑π‘₯)/(1 βˆ’ cos⁑π‘₯ ) and f’(x) = 1/(1 βˆ’ cos⁑π‘₯ ) Hence, ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 βˆ’ sin⁑π‘₯)/(1 βˆ’γ€– cos〗⁑π‘₯ )) 𝑑π‘₯γ€— = ∫_(πœ‹/2)^πœ‹β–’γ€–e^π‘₯⁑((1 )/(1 βˆ’ cos⁑π‘₯ )βˆ’sin⁑π‘₯/(1 βˆ’ cos⁑π‘₯ )) 𝑑π‘₯γ€— = [𝑒^π‘₯ ((βˆ’sin⁑π‘₯)/(1 βˆ’cos⁑π‘₯ ))]_(πœ‹/2)^πœ‹ = ((𝑒^π‘₯ sin⁑π‘₯)/cos⁑〖π‘₯ βˆ’1γ€— )_(πœ‹/2)^πœ‹ Putting limits = (𝑒^πœ‹ sinβ‘πœ‹)/cosβ‘γ€–πœ‹ βˆ’1γ€— βˆ’ (𝑒^(πœ‹/2) sinβ‘γ€–πœ‹/2γ€—)/cos⁑〖 πœ‹/2 βˆ’1γ€— = (𝑒^πœ‹ Γ— (0))/(βˆ’1 βˆ’1)βˆ’ (𝑒^(πœ‹/2) (1))/(0 βˆ’ 1) = 𝒆^(𝝅/𝟐)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo