Check sibling questions

 


Transcript

Misc 22 Integrate the function tan^(−1)⁡√((1 − 𝑥)/(1 + 𝑥)) Let x = cos 2𝜃 𝑑𝑥/𝑑𝜃=−2 sin⁡〖2𝜃 〗 dx = −2 sin 2𝜃 d𝜃 Substituting, ∫1▒〖tan^(−1)⁡√((1 − 𝑥)/(1 + 𝑥)) 𝑑𝑥〗 = ∫1▒〖𝑡𝑎𝑛〗^(−1) √((1 − cos⁡2𝜃)/(1 + cos⁡2𝜃 ))×(−2 sin⁡〖2 𝜃)〗 𝑑 𝜃 = −2∫1▒〖𝑡𝑎𝑛〗^(−1) √((1 − (1 − 2〖𝑠𝑖𝑛〗^2 𝜃))/(1 + (2〖𝑐𝑜𝑠〗^2 𝜃 − 1) ))×("sin 2𝜃 d𝜃 " ) = −2∫1▒〖𝑡𝑎𝑛〗^(−1) √((sin^2⁡𝜃/cos^2⁡𝜃 ) )×sin⁡〖2𝜃 𝑑𝜃〗 = −2∫1▒〖𝑡𝑎𝑛〗^(−1) (sin⁡𝜃/cos⁡𝜃 )×sin⁡〖2𝜃 𝑑𝜃〗 = −2∫1▒〖𝑡𝑎𝑛〗^(−1) (𝑡𝑎𝑛⁡𝜃 )×sin⁡〖2𝜃 𝑑𝜃〗 = − 2 ∫1▒𝜃 sin⁡〖2𝜃 𝑑𝜃〗 =−2(𝜃∫1▒〖sin⁡2𝜃 𝑑𝜃−(∫1▒𝑑(𝜃)/𝑑𝜃 ∫1▒sin⁡2𝜃 𝑑𝜃) 𝑑𝜃〗) =−2(𝜃((−cos⁡2𝜃)/2)−∫1▒1((−cos⁡2𝜃)/2) 𝑑𝜃) =−2(−𝜃(cos⁡2𝜃/2)⤶+∫1▒cos⁡2𝜃/2 𝑑𝜃) =−2(−(𝜃 cos⁡2𝜃)/2⤶+sin⁡2𝜃/4) 1/2 〖𝑐𝑜𝑠〗^(−1) (𝑥)=𝜃 𝜃 = 1/2 〖𝑐𝑜𝑠〗^(−1) 𝑥 𝑥^2=〖𝑐𝑜𝑠〗^2 2𝜃 𝑥^2=1−〖𝑠𝑖𝑛〗^2 2𝜃 〖𝑠𝑖𝑛〗^2 2𝜃="1 − " 𝑥^2 sin 2𝜃 = √(1−𝑥^2 ) Now, x = cos 2𝜃 Putting the values = −2 (−1/2 (1/2 〖𝑐𝑜𝑠〗^(−1) 𝑥)𝑥+√(1 − 𝑥^2 )/4) = −2 (√(1 − 𝑥^2 )/4−(𝑥 〖𝑐𝑜𝑠〗^(−1) 𝑥)/4)+ C = 𝟏/𝟐 (𝒙〖 𝒄𝒐𝒔〗^(−𝟏) 𝒙−√(𝟏−𝒙^𝟐 ) )+ C

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo