Check sibling questions

Β 


Transcript

Misc 20 Integrate the function (2 + sin⁑2π‘₯)/(1 + cos⁑2π‘₯ ) 𝑒^π‘₯ We can write integral as ((2 +γ€– sin〗⁑2π‘₯)/(1 + cos⁑2π‘₯ )) 𝑒^π‘₯ = [(2 + sin⁑2π‘₯)/(1 + (2 cos^2⁑〖π‘₯ βˆ’ 1γ€— ) )] 𝑒^π‘₯ = [(2 + sin⁑2π‘₯)/(2 cos^2⁑π‘₯ )] 𝑒^π‘₯ = [(2 + 2 cos⁑〖π‘₯ sin⁑π‘₯ γ€—)/(2 cos^2⁑π‘₯ )]𝑒π‘₯ = [2(1 +γ€– cos〗⁑〖π‘₯ sin⁑π‘₯ γ€— )/(2 cos^2⁑π‘₯ )]𝑒π‘₯ = [(1 + cos⁑〖π‘₯ sin⁑π‘₯ γ€—)/cos^2⁑π‘₯ ]𝑒π‘₯ = [1/cos^2⁑π‘₯ +cos⁑〖π‘₯ sin⁑π‘₯ γ€—/cos^2⁑π‘₯ ] 𝑒^π‘₯ = [sec^2⁑〖π‘₯+cos⁑〖π‘₯ sin⁑π‘₯ γ€—/cos⁑〖π‘₯ cos⁑π‘₯ γ€— γ€— ] 𝑒^π‘₯ = [sec^2⁑〖π‘₯+tan⁑π‘₯ γ€— ] 𝑒^π‘₯ = [tan⁑〖π‘₯+sec^2⁑π‘₯ γ€— ] 𝑒^π‘₯ It is of the form ∫1▒〖𝑒^π‘₯ [𝑓(π‘₯)+𝑓^β€² (π‘₯)] γ€— 𝑑π‘₯=𝑒^π‘₯ 𝑓(π‘₯)+𝐢 Where 𝑓(π‘₯)=tan⁑π‘₯ 𝑓^β€² (π‘₯)=sec^2⁑π‘₯ So, our equation becomes ∫1β–’γ€–[(2 + sin⁑2π‘₯)/(1 + cos⁑2π‘₯ )] 𝑒^π‘₯ 𝑑π‘₯=∫1▒〖𝑒^π‘₯ [tan⁑〖π‘₯+sec^2⁑π‘₯ γ€— ]𝑑π‘₯γ€—γ€— =𝒆^𝒙 𝒕𝒂𝒏⁑𝒙+𝐂

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo