Check sibling questions


Transcript

Misc 14 Integrate the function 1/((𝑥^2 + 1)(𝑥^2 + 4) ) Integrating 1/(𝑥^2 + 1)(𝑥^2 + 4) Let 𝑥^2=𝑦 1/(𝑥^2 + 1)(𝑥^2 + 4) =1/(𝑦 + 4)(𝑦 + 1) Hence we can write 1/(𝑦 + 4)(𝑦 + 1) =𝐴/((𝑦 + 4) )+𝐵/((𝑦 + 1) ) 1/(𝑦 + 4)(𝑦 + 1) =(𝐴(𝑦 + 1)+𝐵(𝑦 + 4))/(𝑦 + 4)(𝑦 + 1) Canceling denominators 1 = A(𝑦+1)+B(𝑦+4) Putting 𝒚=−𝟏 1= A (−1+1)+B(−1+4) 1= A ×0+ B (3) 1=3B B =1/3 Putting 𝒚=−𝟒 1= A(−4+1)+ B(−4+4) 1= A(−3)+ B(0) 1=−3A A =(−1)/3 Therefore we can write 1/(𝑦 + 4)(𝑦 + 1) =𝐴/((𝑦 + 4) )+𝐵/((𝑦 + 1) ) 1/(𝑦 + 4)(𝑦 + 1) =(((−1)/( 3)))/((𝑦 + 4) )+((1/3))/((𝑦 + 1) ) Putting back 𝑦=𝑥^2 1/(𝑥^2 + 4)(𝑥^2 + 1) =(((−1)/( 3)))/((𝑥^2 + 4) )+((( 1)/( 3)))/((𝑥^2+ 1) ) = (−1)/3(𝑥^2 + 4) +1/3(𝑥^(2 )+ 1) Integrating w.r.t. 𝑥 ∫1▒█(1/(𝑥^(2 )+ 4)(𝑥^2 + 1) 𝑑𝑥) =∫1▒((−1)/3(𝑥^2 + 4) +1/3(𝑥^2 + 1) )𝑑𝑥 =∫1▒〖(−1)/3(𝑥^2 + 4) 𝑑𝑥+〗 ∫1▒〖(−1)/3(𝑥^2 + 1) 𝑑𝑥〗 =(−1)/( 3) ∫1▒〖1/(𝑥^2 + 2^2 ) 𝑑𝑥+1/3 ∫1▒〖1/(𝑥^2 + 1^2 ) 𝑑𝑥〗〗 =(−1)/3 × 1/2 tan^(−1)⁡〖𝑥/2+1/3 × 1/1 tan^(−1)⁡〖𝑥/1+𝐶〗 〗 =(−1)/( 6) tan^(−1)⁡〖𝑥/2+1/3 tan^(−1)⁡〖𝑥+𝑐〗 〗 We know that ∫1▒〖1/(𝑥^2 + 𝑎^2 ) 𝑑𝑥=1/𝑎 tan^(−1)⁡〖𝑥/𝑎+𝑐〗 〗 =𝟏/𝟑 〖𝐭𝐚𝐧〗^(−𝟏)⁡〖𝒙−𝟏/𝟔 〖𝐭𝐚𝐧〗^(−𝟏)⁡〖𝒙/𝟐+𝒄〗 〗

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo