Check sibling questions


Transcript

Misc 1 (Method 1) Integrate the function 1/(π‘₯ βˆ’ π‘₯^3 ) Solving integrand 1/(π‘₯ βˆ’ π‘₯^3 )=1/π‘₯(1 βˆ’ π‘₯^2 ) =𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) We can write it as 𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) = 𝑨/𝒙 + 𝑩/((𝟏 βˆ’ 𝒙) ) + 𝒄/((𝟏 + 𝒙) ) 1/π‘₯(1 βˆ’ π‘₯)(1 + π‘₯) = (𝐴(1 βˆ’ π‘₯) (1 + π‘₯) + 𝐡π‘₯ (1 + π‘₯) + 𝐢π‘₯ (1 βˆ’ π‘₯))/( π‘₯ (1 βˆ’ π‘₯) (1 + π‘₯) ) Cancelling denominator 𝟏 = 𝑨(𝟏 βˆ’ 𝒙) (𝟏 + 𝒙) + 𝑩𝒙 (𝟏 + 𝒙) + π‘ͺ𝒙 (𝟏 βˆ’ 𝒙) Putting 𝒙=𝟎 in (1) 1=𝐴(1 βˆ’ 0) (1 + 0) + 𝐡(0) (1 + 0) + 𝐢(0) (1 βˆ’ 0) 1=𝐴 Γ— 1 Γ— 1 + 𝐡 Γ— 0 + 𝐢 Γ— 0 1=𝐴+0+0 𝑨=𝟏 Putting 𝒙=𝟏 in (1) 1 = 𝐴(1 βˆ’1) (1 +1) + 𝐡(1) (1 +1) + 𝐢(1) (1 βˆ’1) 1 = 𝐴 Γ— 0 + 𝐡 Γ— (1) Γ— (2) + 𝐢 Γ— 0 1 = 0 +2𝐡 + 0 𝑩 = 𝟏/𝟐 Putting 𝒙=βˆ’πŸ in (1) 1 = 𝐴(1 βˆ’(βˆ’1)) (1 +(βˆ’1)) + 𝐡(βˆ’1) (1 +(βˆ’1)) + 𝐢(βˆ’1) (1 βˆ’(βˆ’1)) 1 = 𝐴(1 + 1) (1 βˆ’1) + 𝐡(βˆ’1)(1βˆ’1) + 𝐢(βˆ’1)(1+1) 1 = 𝐴 Γ— 0 + 𝐡 Γ— 0 + 𝐢 Γ—(βˆ’1)(2) 1 = 0 +0 βˆ’2𝐢 1 = βˆ’2𝐢 π‘ͺ = βˆ’πŸ/𝟐 Hence we can write it as 1/π‘₯(1 βˆ’ π‘₯)(1 + π‘₯) = 1/π‘₯ + (𝟏/𝟐)/((1 βˆ’ π‘₯) ) + (βˆ’1/2)/((1 + π‘₯) ) 𝟏/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) = 𝟏/𝒙 + 𝟏/𝟐(𝟏 βˆ’ 𝒙) + (βˆ’πŸ)/𝟐(𝟏 + 𝒙) Therefore ∫1β–’πŸ/𝒙(𝟏 βˆ’ 𝒙)(𝟏 + 𝒙) 𝒅𝒙 = ∫1β–’1/π‘₯ 𝑑π‘₯ + ∫1β–’1/2(1 βˆ’ π‘₯) 𝑑π‘₯ + ∫1β–’(βˆ’1)/2(1 + π‘₯) 𝑑π‘₯ = ∫1β–’1/π‘₯ 𝑑π‘₯ + 1/2 ∫1β–’1/((1 βˆ’ π‘₯) ) 𝑑π‘₯ βˆ’ 1/2 ∫1β–’1/((1 + π‘₯) ) 𝑑π‘₯ = γ€–π₯𝐨𝐠 〗⁑|𝒙|+𝟏/𝟐 [γ€–π₯𝐨𝐠 〗⁑|𝟏 βˆ’ 𝒙|/(βˆ’πŸ)] βˆ’1/2 γ€–π₯𝐨𝐠 〗⁑|𝟏 + 𝒙|+π‘ͺ = γ€–log 〗⁑|π‘₯|βˆ’ γ€– 1/2 log 〗⁑|1 βˆ’ π‘₯|βˆ’1/2 γ€–log 〗⁑|1 + π‘₯|+𝐢 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|1 βˆ’ π‘₯|+γ€–log 〗⁑|1 + π‘₯| ]+𝐢 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|1 βˆ’ π‘₯| |1 + π‘₯|]+𝐢 As π’π’π’ˆ 𝑨+π’π’π’ˆ 𝑩=log⁑𝐴𝐡 = γ€–log 〗⁑|π‘₯|βˆ’1/2 [γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )| ]+𝐢 = 1/2 [2 γ€–log 〗⁑|π‘₯|βˆ’γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )|+2𝐢] = 1/2 [γ€–log 〗⁑〖|π‘₯|^2 γ€—βˆ’γ€–log 〗⁑|(1 βˆ’ π‘₯^2 )|+𝐾] = 𝟏/𝟐 log |𝒙^𝟐/((𝟏 βˆ’ 𝒙^𝟐 ) )|+𝑲 As π’π’π’ˆ π‘¨βˆ’π’π’π’ˆ 𝑩=π‘™π‘œπ‘” 𝐴/𝐡 Misc 1 (Method 2) Integrate the function 1/(π‘₯ βˆ’ π‘₯^3 ) Now, ∫1β–’γ€–1/(π‘₯ βˆ’ π‘₯^3 ) 𝑑π‘₯γ€— Taking x3 common from the denominator =∫1β–’1/(π‘₯^3 (π‘₯/π‘₯^3 βˆ’ 1) ) 𝑑π‘₯ =∫1β–’πŸ/(𝒙^πŸ‘ (𝟏/𝒙^𝟐 βˆ’ 𝟏) ) 𝒅𝒙 Let t = 𝟏/𝒙^𝟐 βˆ’πŸ Differentiating with respect to π‘₯ 𝑑/𝑑π‘₯ (1/π‘₯^2 βˆ’1)=𝑑𝑑/𝑑π‘₯ (βˆ’2)/π‘₯^3 =𝑑𝑑/𝑑π‘₯ 𝒅𝒙=(𝒙^πŸ‘ 𝒅𝒕)/(βˆ’πŸ) Putting the value t and dt in the equation ∫1β–’γ€–πŸ/(𝒙^πŸ‘ (𝟏/𝒙^𝟐 βˆ’πŸ) ) 𝒅𝒙〗=∫1β–’γ€–1/(π‘₯^3 (𝑑) ) Γ— (π‘₯^3 𝑑𝑑)/(βˆ’2)γ€— =∫1β–’γ€–πŸ/(βˆ’πŸ) 𝒅𝒕/𝒕〗 =(βˆ’1)/( 2) ∫1▒𝑑𝑑/𝑑 =(βˆ’1)/( 2) π‘™π‘œπ‘”|𝑑|+𝐢 Putting back 𝒕=𝟏/𝒙^𝟐 βˆ’πŸ =(βˆ’1)/( 2) π‘™π‘œπ‘”|1/π‘₯^2 βˆ’1|+𝐢 =(βˆ’1)/( 2) π‘™π‘œπ‘”|(𝟏 βˆ’ 𝒙^𝟐)/𝒙^𝟐 |+𝐢 = 1/2 log |(1 βˆ’ π‘₯^2)/π‘₯^2 |^(βˆ’πŸ)+𝐢 = 𝟏/𝟐 log |𝒙^𝟐/(𝟏 βˆ’ 𝒙^𝟐 )|+π‘ͺ (As a log b = log 𝑏^π‘Ž)

  1. Chapter 7 Class 12 Integrals
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo